Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Pharmacol ; 13: 893336, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35774609

RESUMO

Nonalcoholic fatty liver disease (NAFLD) is defined as liver disease in which more than 5% of hepatocytes are steatotic with little or no alcohol consumption. NAFLD includes benign nonalcoholic fatty liver (NAFL) and nonalcoholic steatohepatitis (NASH). Importantly, NASH is an advanced progression of NAFL and is characterized by steatosis, hepatocyte ballooning, lobular inflammation, and fibrosis. However, to date, no drugs specifically targeting NAFLD have been approved by the FDA. Therefore, a new drug or strategy for NAFLD treatment is necessary. However, the pathogenesis of NAFLD is complex and no single-target drugs have achieved the desired results. Noticeably, traditional Chinese medicine formulations are a complex system with multiple components, multiple targets, and synergistic effects between components. The Ganweikang tablet is a compound formula based on traditional Chinese medicine theory and clinical experience. In this study, network pharmacology analysis indicates Ganweikang tablet as a candidate for NAFLD treatment. Furthermore, we evaluated the therapeutic effects of Ganweikang tablet on the NAFL and NASH and tried to clarify the underlying molecular mechanisms in animal models and cell experiments. As expected, Ganweikang tablet was found to improve NAFL and NASH by modulating inflammation, apoptosis, and fatty acid oxidation by inhibiting NFκB, caspase-8, and activating PPARα, which not only indicates that Ganweikang tablet as a drug candidate but also provides a theoretical basis of Ganweikang tablet for the treatment of NAFL and NASH.

2.
Phytomedicine ; 91: 153702, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34419734

RESUMO

BACKGROUND: Migraine is the third most common disease worldwide, leading to severely decreased quality of life for the patients. In spite of great efforts endeavored in pharmacological and nonpharmacological therapeutic strategies for treating migraine, the outcome is rather disappointing in terms of efficacy. Compelling evidence shows that the expression level of dopamine receptor D2 (DRD2) plays an essential role in progression of migraine. PURPOSE: To explore potential therapeutical possibilities, the attention was paid to Yuanhu Zhitong formula (YHZTF), which is a classical traditional Chinese medicine prescription frequently applied to relieve pain. The aim of this study was to identify the promising compounds derived from YHZTF with anti-migraine effects and investigate the underlying molecular mechanism. METHODS: The high-resolution mass spectrometry and molecular networking were performed for comprehensive chemical profiling of YHZTF. Network pharmacology was used to generate herbal-component-target-pathway network. Based on the pathway enrichment analysis, the active substances of anti-migraine and the potential molecular mechanism were further determined by performing animal experiments combined with molecular docking strategy. RESULTS: In total, 31 substances were identified in YHZTF, including alkaloids such as tetrahydropalmatine and protopine. The analysis of herbal-component-target-pathway network suggests that the alkaloid substances (e.g. tetrahydropalmatine and protopine) from YHZTF target dopamine receptors, thus can be linked to neuroactive ligand-receptor interaction pathways. In a nitroglycerin-induced migraine animal model, pretreatment with tetrahydropalmatine or protopine substantially lessened the aberrant migraine-like symptoms. The results of molecular docking analysis showed that tetrahydropalmatine and protopine had strong affinities to dopamine receptor D2 (DRD2). Using RT-qPCR, the investigators found that DRD2 was significantly down-regulated at the mRNA level in brain tissues of tetrahydropalmatine and protopine-treated group compared to the control group. CONCLUSION: Collectively, the results provide reliable evidence showing that the active substances tetrahydropalmatine and protopine from YHZTF lessens migraine symptoms in an in vivo mouse model suggestively via regulating expression of DRD2. These findings shed light on novel therapeutic strategies and targets to treat migraine using natural products.


Assuntos
Benzofenantridinas/farmacologia , Alcaloides de Berberina/farmacologia , Medicamentos de Ervas Chinesas , Transtornos de Enxaqueca , Receptores de Dopamina D2/metabolismo , Animais , Medicamentos de Ervas Chinesas/farmacologia , Camundongos , Transtornos de Enxaqueca/tratamento farmacológico , Simulação de Acoplamento Molecular
3.
Sci Rep ; 6: 36486, 2016 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-27819344

RESUMO

SL4, a chalcone-based compound, has been shown to retard tumor invasion and angiogenesis by suppressing HIF1 activity and to induce apoptosis by promoting ROS release. Here, we report that SL4 is able to inhibit the proliferation of different types of breast cancer cell in vitro and in vivo by inducing G2/M cell cycle arrest. Our results showed that SL4 exhibited strong anti-proliferative activity in several human breast cancer cell lines, with IC50 values lower than 1.3 µM. Further studies indicated that SL4 induced G2/M arrest in these cell lines. Mechanistically, SL4 reduces the expression of cyclin A2 and cdc25C and decreases the activity of the cdc2/cyclin B1 complex. Notably, SL4 treatment resulted in an obvious increase in p21 mRNA and protein levels through activation of MAPK signaling pathways, but not the TGF-ß pathway. SP600125 and PD98059, specific inhibitors of JNK kinase and ERK kinase, significantly blocked the SL4-induced G2/M phase arrest and upregulation of p21. Furthermore, SL4 suppressed the growth of established breast tumors in nude mice through upregulation of p21 and downregulation of cdc25C, and displayed a good safety profile. Taken together, these findings demonstrate the potential value of SL4 as a novel multi-target anti-tumor drug candidate.


Assuntos
Antineoplásicos/farmacologia , Chalconas/farmacologia , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Pontos de Checagem da Fase M do Ciclo Celular/efeitos dos fármacos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Antineoplásicos/química , Antineoplásicos/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Proteína Quinase CDC2/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Chalconas/química , Chalconas/uso terapêutico , Inibidor de Quinase Dependente de Ciclina p21/genética , Regulação para Baixo/efeitos dos fármacos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Feminino , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Células MCF-7 , Camundongos , Camundongos SCID , Espécies Reativas de Oxigênio/metabolismo , Fator de Crescimento Transformador beta/metabolismo
4.
Chem Biol Interact ; 249: 64-70, 2016 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-26944433

RESUMO

A novel series of cinnamohydroxamic acid derivatives were synthesized and their biological activities against HDAC were assessed. Our results showed that the compound with more strong inhibitory activity to HDAC would exhibited more significant anti-proliferative effect on tumor cells. Among these compounds, 7e displayed clearly inhibitory effects on HDAC and tumor cell growth. Furthermore, HDAC isoforms enzyme data indicated that, compared to HDAC pan-inhibitor SAHA, 7e owned an enhanced inhibitory effect on HDAC1, 3 and 6 isoforms. Meanwhile, it also significantly suppressed cell growth of lung cancer cells compared to SAHA, but with lower toxicity in normal cells. Mechanistically, 7e prompted acetylation of histone3 and histone4, led to up-regulation of p21, and then mediated cell cycle arrest and pro-apoptosis. Moreover, the in vivo study indicated that compound 7e could retard tumor growth of A549 xenograft models. These findings support the further investigation on the anti-tumor potential of this class of compounds as HDAC inhibitor.


Assuntos
Antineoplásicos/farmacologia , Inibidores de Histona Desacetilases/farmacologia , Ácidos Hidroxâmicos/farmacologia , Apoptose/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Células HL-60 , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Isoformas de Proteínas/metabolismo , Regulação para Cima/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
5.
Oncotarget ; 6(12): 9740-55, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25762635

RESUMO

Retinoid X receptor (RXR) and Histone deacetylase (HDAC) are considered important targets for cancer therapy due to their crucial roles in genetic or epigenetic regulations of cancer development and progression. Here, we evaluated the potential of dual targeting of RXR and HDAC using DW22 as a novel therapeutic approach to cancer treatment. We found that the co-expression of RXR-α and HDAC1 was frequently appeared in lung cancer and breast cancer tissues and cell lines. RXR was activated by DW22 in RXRα and HDAC1 overexpressed A549 and MDA-MB-435 cell lines. Meanwhile, DW22 inhibited the activity of HDAC by decreasing its expression in A549 and MDA-MB-435 cell lines, but not in RXRα and HDAC1 deficient cell lines. Moreover, DW22 suppressed cell growth, induced cell differentiation, prompted cell apoptosis and arrested cell cycle in A549, MDA-MB-435 or HL60 cell lines. Treatment human umbilical vascular endothelial cells (HUVECs) with DW22 suppressed migration, invasion and tube formation through decreasing VEGF expression. The up-regulation of Ac-H3 and p21, and down-regulation of VEGF caused by DW22 was markedly attenuated by silencing of HDAC1. Furthermore, knockdown of RXRα by siRNA completely blocked DW22-induced cell differentiation, but partially attenuated DW22-caused inhibition of cell proliferation, induction of cell apoptosis, and suppression of cell migration, invasion and tube formation. Moreover, intravenous administration of DW22 significantly retarded tumor growth of A549 and MDA-MB-435 xenograft mice models, and induced no substantial weight loss and gross toxicity. In addition, DW22 also reduced cell proliferation, angiogenesis, and induced cell apoptosis in vivo. Collectively, our data demonstrates that dual targeting of RXR and HDAC using DW22 possesses pleiotropic antitumor activities both in vitro and in vivo, providing a novel therapeutic approach for cancer treatment.


Assuntos
Antineoplásicos/uso terapêutico , Regulação Neoplásica da Expressão Gênica , Histona Desacetilase 1/metabolismo , Ácidos Hidroxâmicos/uso terapêutico , Receptor X Retinoide alfa/metabolismo , Tetra-Hidronaftalenos/uso terapêutico , Idoso , Animais , Bexaroteno , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Diferenciação Celular , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Inativação Gênica , Células HL-60 , Histonas/metabolismo , Células Endoteliais da Veia Umbilical Humana , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos SCID , Pessoa de Meia-Idade , Invasividade Neoplásica , Transplante de Neoplasias , Neovascularização Patológica , RNA Interferente Pequeno/metabolismo , Regulação para Cima , Fator A de Crescimento do Endotélio Vascular/metabolismo
6.
Eur J Med Chem ; 89: 88-97, 2015 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-25462229

RESUMO

A novel series of chalcone derivatives were synthesized and their biological activities against HIF-1 were evaluated. Among these compounds, 5d exhibited clearly inhibitory effects on HIF-1 by downregulating the expression of HIF-1α under hypoxic conditions. Meanwhile, it also significantly suppressed VEGF-induced migration and invasion of Hep3B and HUVEC cells in nontoxic concentrations. Additionally, tube formation assay demonstrated its anti-angiogenesis activity. Moreover, the in vivo study indicated that compound 5d could retard tumor growth of Hep3B xenograft models and reduced CD31 and MMP-2 expression in tumor tissues. Finally, in acute intravenous toxicity, 5d was well tolerated and was found to be non-toxic up to 200 mg/kg in Swiss mice. These findings support the further investigation on the anti-invasive and anti-angiogenic potential of this class of compounds as HIF-1 inhibitor.


Assuntos
Inibidores da Angiogênese/farmacologia , Antineoplásicos/farmacologia , Chalcona/farmacologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/antagonistas & inibidores , Neoplasias Experimentais/tratamento farmacológico , Inibidores da Angiogênese/síntese química , Inibidores da Angiogênese/química , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Chalcona/síntese química , Chalcona/química , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Estrutura Molecular , Neoplasias Experimentais/patologia , Relação Estrutura-Atividade , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...