Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Exp Mol Pathol ; 121: 104665, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34216584

RESUMO

Abnormal metabolism and uncontrolled angiogenesis are two important characteristics of malignant tumors. Although HBXIP is known to be associated with a poor prognosis for bladder cancer (BC), its effects on glycolysis and angiogenesis in BC have not been investigated. BC prognosis and relative gene expression of HBXIP were analyzed using the GEPIA, UALCAN, and STRING databases. BC cell angiogenesis and glycolysis were assessed by vasculogenic mimicry and glycolysis assay. Human umbilical vein endothelial cell (HUVEC) viability, migration, and angiogenesis were assessed by CCK8, transwell, wound healing, and tube formation assays. The results showed that HBXIP was highly expressed in BC tissues and cells. Knockdown of HBXIP expression decreased the levels of glucose uptake, lactate production, and glycolytic enzyme expression in BC cells, and decreased cell viability and migration of HUVECs. Additionally, silencing HBXIP reduced the total length of tubes and number of intersections, and EPO and VEGF protein expression in BC cells and HUVECs. Furthermore, knockdown of HBXIP expression reversed cell viability, migration, tube formation, and vasculogenic mimicry under high glucose and lactate conditions. Mechanistically, silencing of HBXIP reduced the protein expression levels of pAKT-ser473 and pmTOR, and inhibition of HBXIP, AKT, and mTOR expression decreased glycolytic enzyme protein expression. Our findings suggest that HBXIP reduces glycolysis in BC cells via regulation of AKT/mTOR signaling, thereby blocking BC angiogenesis. Collectively, this study provides a potential strategy to target HBXIP and AKT/mTOR for regulating glycolysis progression concurrently with anti-angiogenesis effects, and thereby develop novel therapeutics for the treatment of BC.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Glicólise , Neovascularização Patológica/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Neoplasias da Bexiga Urinária/irrigação sanguínea , Proteínas Adaptadoras de Transdução de Sinal/genética , Movimento Celular , Proliferação de Células , Sobrevivência Celular , Células Endoteliais da Veia Umbilical Humana , Humanos , Neovascularização Patológica/genética , Neovascularização Patológica/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Transdução de Sinais , Serina-Treonina Quinases TOR/genética , Células Tumorais Cultivadas , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/metabolismo , Neoplasias da Bexiga Urinária/patologia
2.
Neural Regen Res ; 8(26): 2441-8, 2013 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-25206554

RESUMO

Expression of miR-137 is downregulated in brain tissue from patients with depression and suicidal behavior, and is also downregulated in peripheral blood from stroke patients. However, it is not yet known if miR-137 acts as a bridge between stroke and depression. To test this, we used middle cerebral artery occlusion and chronic mild stress to establish a post-stroke depression model in rats. Compared with controls, we found significantly lower miR-137 levels in the brain and peripheral blood from post-stroke depression rats. Injection of a miR-137 antagonist into the brain ventricles upregulated miR-137 levels, and improved behavioral changes in post-stroke depression rats. Luciferase assays showed miR-137 bound to the 3'UTR of Grin2A, regulating Grin2A expression in a neuronal cell line. Grin2A gene overexpression in the brain of post-stroke depression rats, noticeably suppressed the inhibitory effect of miR-137 on post-stroke depression. Overall, our results show that miR-137 suppresses Grin2A protein expression through binding to Grin2A mRNA, thereby exerting an inhibitory effect on post-stroke depression. Our results offer a new therapeutic direction for post-stroke depression.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...