Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Inorg Chem ; 60(3): 1480-1490, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33427451

RESUMO

Graphene materials with particular properties are proved to be beneficial to photoelectric devices, but there are rare reports on a positive effect by graphene on emissive layer materials of organic light-emitting diodes (OLEDs) previously. On the basis of the latest important experiments, an OLED device with the aid of graphene quantum dots shows the dawn of their application for luminescent materials. The luminescence performance has been improved, but the understanding of the internal excited-state radiation mechanism of the material needs further study. In this work, the Pt(II)-coordinated graphene quantum dot coplanar structures with different shapes are studied theoretically in detail, and the results present the improvement in phosphorescence under the promoted radiative decay and suppressed nonradiative decay. This composite combines the advantages of transition metal complexes and graphene quantum dots and also exhibits excellent properties in the light absorption region and carrier transportation for the OLED. This comprehensive theoretical calculation research can provide a comprehensive basis of the material design in the future.

2.
J Phys Condens Matter ; 32(15): 155902, 2020 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-31846949

RESUMO

By processing graphene quantum dot, an ideal semiconductor material with suitable band gap and higher electron mobility can be obtained. Thus, it has a broad prospect in the application of photoelectric response materials. Here, a graphene defect with porphyrin-like structure is selected to achieve the controlable light absorption. The double five-membered-ring parallel vacancy are based on self-healing properties of popular graphene defects. Aimed to separate exciton and hole more effectively and achieve higher photoelectric conversion efficiency, the occupied orbital and unoccupied orbital of the quantum dot with objected defect structure is taken as orderly dispersion to form an obvious charge separation state under the demonstration with first principles calculation. Most importantly, a real time real space charge separation is calculated by time-dependent ab-initio quantum dynamics based on numerical atomic basis sets. The result shows the specific graphene defects can form an efficient pure graphene photoelectric response medium like porphyrin skeleton, and the vacancy will induce to adjust and control the specific wavelength of the response light and charge separated state manipulably with odevity of number of peripheral carbon rings by the calculation of ultrafast process.

3.
Plant Mol Biol ; 87(3): 317-27, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25549607

RESUMO

Previous studies have shown that TaNHX2 transgenic alfalfa (Medicago sativa L.) accumulated more K(+) and less Na(+) in leaves than did the wild-type plants. To investigate whether the increased K(+) accumulation in transgenic plants is attributed to TaNHX2 gene expression and whether the compartmentalization of Na(+) into vacuoles or the intracellular compartmentalization of potassium is the critical mechanism for TaNHX2-dependent salt tolerance in transgenic alfalfa, aerated hydroponic culture was performed under three different stress conditions: control condition (0.1 mM Na(+) and 6 mM K(+) inside culture solution), K(+)-sufficient salt stress (100 mM NaCl and 6 mM K(+)) and K(+)-insufficient salt stress (100 mM NaCl and 0.1 mM K(+)). The transgenic alfalfa plants had lower K(+) efflux through specific K(+) channels and higher K(+) absorption through high-affinity K(+) transporters than did the wild-type plants. Therefore, the transgenic plants had greater K(+) contents and [K(+)]/[Na(+)] ratios in leaf tissue and cell sap. The intracellular compartmentalization of potassium is critical for TaNHX2-induced salt tolerance in transgenic alfalfa.


Assuntos
Genes de Plantas , Medicago sativa/genética , Medicago sativa/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Tolerância ao Sal/genética , Trocadores de Sódio-Hidrogênio/genética , Trocadores de Sódio-Hidrogênio/metabolismo , Triticum/genética , Triticum/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Potássio/metabolismo , Tolerância ao Sal/fisiologia
4.
Funct Plant Biol ; 42(11): 1080-1091, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32480747

RESUMO

Based on the information of 25 heat shock transcription factor (Hsf) homologues in maize according to a genome-wide analysis, ZmHsf06 was cloned from maize leaves and transformed into Arabidopsis thaliana (L. Heynh.) (ecotype, Col-0). Three transgenic positive lines were selected to assess the basic and acquired thermotolerance and drought-stress tolerance under stresses and for some physiological assays. The sequence analysis indicates that ZmHsf06 contained the characteristic domains of class A type plant Hsfs. The results of qRT-PCR showed that the expression levels of ZmHsf06 were elevated by heat shock and drought stress to different extents in three transgenic lines. Phenotypic observation shows that compared with the Wt (wild-type) controls, the overexpressing ZmHsf06 of Arabidopsis plants have enhanced basal and acquired thermotolerance, stronger drought-stress tolerance and growth advantages under mild heat stress conditions. These results are further confirmed by physiological and biochemical evidence that transgenic Arabidopsis plants exhibit higher seed germination rate, longer axial-root length, higher activities of superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT), higher leaf chlorophyll content, but lower relative electrical conductivity (REC), malondialdehyde (MDA) and osmotic potential (OP) than the Wt controls after heat shock and drought treatments. ZmHsf06 may be a central representative of maize Hsfs and could be useful in molecular breeding of maize or other crops for enhanced tolerances, particularly during terminal heat and drought stresses.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...