Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Acta Histochem ; 126(2): 152144, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38382218

RESUMO

OBJECTIVE: Histone-deacetylases (HDACs) are epigenetic modulators involved in the control of gene expression. No data are available on the expression or subcellular localization of HDACs in salivary glands. The present study aims to examine the subcellular distribution of HDACs in salivary glands during postnatal development. DESIGN: The major salivary glands of C57/BL6 mice were separately removed at 10, 25, 30,60 and 90 days after birth. Hematoxylin-eosin (H&E) and immunohistochemical staining were performed for HDACs. Gene Expression of HDACs in C57BL/6. NOD-Aec1Aec2 mice salivary glands during the development of Sjögren's syndrome-like illness were also analyzed by using the gene expression datasets (GSE 15640). RESULTS: In the mice salivary gland, HDACs were found to have different localization patterns at various stages of development (10, 25, 30, 60, and 90 days). Apart from HDAC6, ductal cells of salivary glands were the primary sites for HDAC localization. HDAC2, 8, 5, 10 and 11 were expressed at high levels in the salivary gland after birth while HDAC6 showed no expression during postnatal development. This suggests that these HDAC subtypes may have different roles in salivary gland function. In the context of Sjögren's syndrome-like illness, HDAC 2, 8 and 10 showed low expression while HDAC1, 6,5,3 and 11 had relatively high expression in the salivary gland. CONCLUSIONS: This study has provided an important reference for understanding the spatiotemporal-specific expression of HDACs in the salivary gland. These results offer new clues for the experimenters and hold promise for developing innovative therapeutic strategies for salivary gland-related diseases.


Assuntos
Síndrome de Sjogren , Animais , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Histona Desacetilases/genética , Histonas , Glândulas Salivares
2.
Chemistry ; 29(4): e202202810, 2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36259457

RESUMO

Viologens (1,1'-disubstituted 4,4'-bipyridyls) possessing electron-deficient properties and redox activity are a class of suitable chromophores to assemble metal-organic hybrid photochromic materials. Thus, viologen-functionalized metal-organic frameworks (MOFs) have attracted much attention for their photochromic properties; however, the syntheses of lanthanide-viologen hybrid crystalline photochromic materials still face many challenges. For example, the structures and properties of the final products are difficult to predict and are limited by molecular configurations. In this work, host-guest composite-material Ln-NH2 BDC-pbpy MOFs were constructed by encapsulating viologen derivative pbpyCl2 . The pbpy2+ moieties are uniformly embed by their π-π conjugation in the pores of the 3D structure by electrostatic interactions. Due to the encapsulation of the chromophore pbpy2+ moieties, Ln-NH2 BDC-pbpy MOFs have reversible photochromic properties: they can change color after irradiation and can return to the original color after being protected from light or heating. Interestingly, the fluorescence intensity decreases with illumination time and recovers in the dark. As a result, Ln-NH2 BDC-pbpy MOFs show both photochromic and photomodulated fluorescence. Based on the outstanding fluorescence performance of the Ln-NH2 BDC-pbpy MOFs, they also show a wonderful effect for detecting nitrophenols, especially TNP.

3.
ACS Omega ; 5(31): 19861-19867, 2020 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-32803082

RESUMO

Here, we report the fabrication of TiO2/Fe2O3 core/shell heterojunction nanorod arrays by a pulsed laser deposition (PLD) process and their further use as photoelectrodes toward high-performance visible light photoelectrochemical (PEC) water splitting. The morphology, phase, and carrier conduction mechanism of plain TiO2 and TiO2/Fe2O3 core/shell nanostructure were systematically investigated. PEC measurements show that the TiO2/Fe2O3 core/shell nanostructure enhances photocurrent density by nearly 2 times than the plain ones, increases visible light absorption from 400 to 550 nm, raises the on/off separation rate, and delivers high stability with only a 3% decrease of current density for tests of even more than 14 days. This work provides a method to design an efficient nanostructure by combination of a facile hydrothermal process and high-quality PLD process to fabricate a clean surface and excellent crystallinity for charge separation, transfer, and collection toward enhanced PEC properties.

4.
Phys Chem Chem Phys ; 22(25): 14052-14060, 2020 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-32568323

RESUMO

We study the transport of self-propelled particles from one free chamber to another across two stripe-like areas of dense porous medium. The medium is mimicked by arrays of obstacles. We find that active motion could greatly speed up the transport of particles. However, more and more particles become trapped in the obstacle arrays with the enhancement of activity. At high persistence (low rotational diffusion rate) and moderate particle concentration, we observe the Matthew effect in the aggregation of particles in the two obstacle arrays. This effect is weakened by introduction of randomness or deformability into the obstacle arrays. Moreover, the dependence on deformability shows the characteristics of first-order phase transition. In rare situations, the system could be stuck in a dynamic unstable state, e.g. the particles alternatively gather more in one of the two obstacle arrays, exhibiting oscillation of particle number between the arrays. Our results reveal new features in the transport of active objects in a complex medium and have implications for manipulating their collective assembly.

5.
Sci Total Environ ; 683: 498-507, 2019 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-31141751

RESUMO

With the increased development of oil and gas activities in northern Colorado, public concerns over the environmental impacts associated with well drilling and hydraulic fracturing have continued to rise. Issues such as leakages of "toxic" products from oil and gas operations to the subsurface environment (such as groundwater contamination) have led to community action and state regulations related to the establishment of groundwater quality monitoring sites in oil and gas activity areas, particularly those adjacent to urban development. Colorado Water Watch was a groundwater quality monitoring network comprised of seven monitoring wells in northern Colorado to monitor groundwater quality near oil and gas wells and give early warnings of contamination. Our study is aimed at developing a quantitative methodology to find ideal monitoring locations as well as evaluate them. We utilized hydraulic and geological data to select the most preferred sites to monitor groundwater quality, understand the temporal trends and identify unique anomaly signals in the oil and gas active area (Wattenberg field, northern Colorado). In addition to the site selection methodology, water quality data from Colorado Water Watch over 2 years is used to do evaluate the performance using entropy information and Principal Component Analysis. The analysis indicates that the earliest functional monitoring site (CHILL) is the most informative monitoring well, and the most recently installed monitoring sites (Gilcrest and LaSalle) are the least informative and least important stations due to their low data efficiency.

6.
J Chem Phys ; 149(16): 164902, 2018 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-30384734

RESUMO

In an earlier work, we discussed the possibility to realize a microrotor by immersing a chain-grafted colloidal disk in a thin film of active-particle suspension. Under certain conditions, the colloidal disk rotates unidirectionally driven by the bath active particles. Here we systematically study the role of active-particle concentration, grafting density, and chain rigidity in the phenomenon of the spontaneous symmetry breaking of the chain configurations and the unidirectional rotation of the disk. We find that high chain rigidity can help stabilize both the collective asymmetric chain configurations and the rotation of the disk, while it has a weak impact on the rotational speed/efficiency. Increasing the number of grafted chains can also stabilize the rotation but has a negative impact on the rotational speed/efficiency. Active particles power the rotation of the colloidal disk, yet their contribution saturates beyond a certain concentration. Our work provides new insights into the active systems with chain-structured objects and the design of soft/deformable micromachines.

7.
Soft Matter ; 13(44): 8031-8038, 2017 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-29034931

RESUMO

Exploiting the energy of randomly moving active agents such as bacteria is a fascinating way to power a microdevice. Here we show, by simulations, that a chain-grafted disk-like colloidal particle can rotate unidirectionally and hence output work when immersed in a thin film of active particle suspension. The collective spontaneous symmetry breaking of chain configurations is the origin of the unidirectional rotation. Long persistence time, large propelling force and/or small rotating friction are keys to sustaining the collective broken symmetry and realizing the rotation. In the rotating state, we find very simple linear relations, e.g. between the mean angular speed and the propelling force. The time-evolving asymmetry of chain configurations reveals that there are two types of non-rotating state. The basic phenomena are also observed in the macroscopic granular experiments, implying the generic nature of these phenomena. Our findings provide new insights into the collective spontaneous symmetry breaking in active systems with flexible objects and also open the way to conceive new soft/deformable microdevices.

8.
Soft Matter ; 12(39): 8104-8111, 2016 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-27714340

RESUMO

Bond length is generally not considered as a controllable variable for molecular polymers. Hence, no experimental, simulation or theoretical research, to our knowledge, has examined the influence of bond length on the glassy dynamics of polymers. Recently, a new class of assembling materials called "colloidal polymers" has been synthesized. These colloidal polymers have advantages over molecular polymers in the visibility and flexibility of tuning, for example, the size and shape of the "monomers", the interaction, and the bond length. Dense suspension of colloidal polymers will become a very promising ideal model system for exploring the fundamental problems in the glass transition of chain "molecules". Here, we study the static structure and activated dynamics of hard-sphere colloidal polymers by generalizing the colloidal nonlinear Langevin equation theory to colloidal polymers. Surprisingly, we find that the bond length plays a critical and unique role in many aspects. For instance, the universal relations of the characteristic local lengths and the activated barrier versus the "degree of supercooling", and the structural relaxation versus local vibrational motion are found to be dependent on bond length and independent of chain length and rigidity. We hope that our findings inspire future experimental and simulation research studies on the glassy dynamics of colloidal polymers.

9.
J Chem Phys ; 144(20): 204509, 2016 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-27250318

RESUMO

In recent years, attempts have been made to assemble colloidal particles into chains, which are termed "colloidal polymers." An apparent difference between molecular and colloidal polymers is the "monomer" size. Here, we propose a model to represent the variation from molecular polymer to colloidal polymer and study the quantitative differences in their glassy dynamics. For chains, two incompatible local length scales, i.e., monomer size and bond length, are manifested in the radial distribution function and intramolecular correlation function. The mean square displacement of monomers exhibits Rouse-like sub-diffusion at intermediate time/length scale and the corresponding exponent depends on the volume fraction and the monomer size. We find that the threshold volume fraction at which the caging regime emerges can be used as a rescaling unit so that the data of localization length versus volume fraction for different monomer sizes can gather close to an exponential curve. The increase of monomer size effectively increases the hardness of monomers and thus makes the colloidal polymers vitrify at lower volume fraction. Static and dynamic equivalences between colloidal polymers of different monomer sizes have been discussed. In the case of having the same peak time of the non-Gaussian parameter, the motion of monomers of larger size is much less non-Gaussian. The mode-coupling critical exponents for colloidal polymers are in agreement with that of flexible bead-spring chains.

10.
Sci Rep ; 6: 20355, 2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-26829174

RESUMO

Field-theoretical method is efficient in predicting assembling structures of polymeric systems. However, it's challenging to generalize this method to study the polymer/nanoparticle mixture due to its multi-scale nature. Here, we develop a new field-based model which unifies the nanoparticle description with the polymer field within the self-consistent field theory. Instead of being "ensemble-averaged" continuous distribution, the particle density in the final morphology can represent individual particles located at preferred positions. The discreteness of particle density allows our model to properly address the polymer-particle interface and the excluded-volume interaction. We use this model to study the simplest system of nanoparticles immersed in the dense homopolymer solution. The flexibility of tuning the interfacial details allows our model to capture the rich phenomena such as bridging aggregation and depletion attraction. Insights are obtained on the enthalpic and/or entropic origin of the structural variation due to the competition between depletion and interfacial interaction. This approach is readily extendable to the study of more complex polymer-based nanocomposites or biology-related systems, such as dendrimer/drug encapsulation and membrane/particle assembly.

11.
Water Res ; 88: 458-466, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-26519629

RESUMO

The potential impact of rapid development of unconventional oil and natural gas resources using hydraulic fracturing and horizontal drilling on regional groundwater quality has received significant attention. Major concerns are methane or oil/gas related hydrocarbon (such as TPHs, BTEX including benzene, toluene, ethybenzene and xylene) leaks into the aquifer due to the failure of casing and/or stray gas migration. Previously, we investigated the relationship between oil and gas activity and dissolved methane concentration in a drinking water aquifer with the major finding being the presence of thermogenic methane contamination, but did not find detectable concentrations of TPHs or BTEX. To understand if aqueous and gas phases from the producing formation were transported concurrently to drinking water aquifers without the presence of oil/gas related hydrocarbons, the ionic composition of three water groups was studied: (1) uncontaminated deep confined aquifer, (2) suspected contaminated groundwater - deep confined aquifer containing thermogenic methane, and (3) produced water from nearby oil and gas wells that would represent aqueous phase contaminants. On the basis of quantitative and spatial analysis, we identified that the "thermogenic methane contaminated" groundwater did not have similarities to produced water in terms of ionic character (e.g. Cl/TDS ratio), but rather to the "uncontaminated" groundwater. The analysis indicates that aquifer wells with demonstrated gas phase contamination have not been contacted by an aqueous phase from oil and gas operations according to the methodology we use in this study and the current groundwater quality data from COGCC. However, the research does not prove conclusively that this the case. The results may provide insight on contamination mechanisms since improperly sealed well casing may result in stray gas but not aqueous phase transport.


Assuntos
Monitoramento Ambiental , Água Subterrânea/análise , Metano/análise , Campos de Petróleo e Gás/química , Poluentes Químicos da Água/análise , Colorado , Íons/análise , Poços de Água
12.
J Chem Phys ; 143(22): 224903, 2015 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-26671400

RESUMO

The interaction between polymer brush and colloidal particles has been intensively studied in the last two decades. Here, we consider a flat chain-grafted substrate immersed in a bath of active particles. Simulations show that an increase in the self-propelling force causes an increase in the number of particles that penetrate into the brush. Anomalously, the particle density inside the main body of the brush eventually becomes higher than that outside the brush at very large self-propelling force. The grafted chains are further stretched due to the steric repulsion from the intruded particles. Upon the increase of the self-propelling force, distinct stretching behaviors of the chains were observed for low and high grafting densities. Surprisingly, we find a weak descent of the average end-to-end distance of chains at high grafting density and very large force which is reminiscent of the compression effect of a chain in the active bath.

13.
J Chem Phys ; 140(9): 094506, 2014 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-24606367

RESUMO

The microscopic nonlinear Langevin equation theory is applied to study the localization and activated hopping of two-dimensional hard disks in the deeply supercooled and glass states. Quantitative comparisons of dynamic characteristic length scales, barrier, and their dependence on the reduced packing fraction are presented between hard-disk and hard-sphere suspensions. The dynamic barrier of hard disks emerges at higher absolute and reduced packing fractions and correspondingly, the crossover size of the dynamic cage which correlates to the Lindemann length for melting is smaller. The localization lengths of both hard disks and spheres decrease exponentially with packing fraction. Larger localization length of hard disks than that of hard spheres is found at the same reduced packing fraction. The relaxation time of hard disks rises dramatically above the reduced packing fraction of 0.88, which leads to lower reduced packing fraction at the kinetic glass transition than that of hard spheres. The present work provides a foundation for the subsequent study of the glass transition of binary or polydisperse mixtures of hard disks, normally adopted in experiments and simulations to avoid crystallization, and further, the rheology and mechanical response of the two-dimensional glassy colloidal systems.

14.
Environ Sci Technol ; 48(3): 1484-91, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24456231

RESUMO

Public concerns over potential environmental contamination associated with oil and gas well drilling and fracturing in the Wattenberg field in northeast Colorado are increasing. One of the issues of concern is the migration of oil, gas, or produced water to a groundwater aquifer resulting in contamination of drinking water. Since methane is the major component of natural gas and it can be dissolved and transported with groundwater, stray gas in aquifers has elicited attention. The initial step toward understanding the environmental impacts of oil and gas activities, such as well drilling and fracturing, is to determine the occurrence, where it is and where it came from. In this study, groundwater methane data that has been collected in response to a relatively new regulation in Colorado is analyzed. Dissolved methane was detected in 78% of groundwater wells with an average concentration of 4.0 mg/L and a range of 0-37.1 mg/L. Greater than 95% of the methane found in groundwater wells was classified as having a microbial origin, and there was minimal overlap between the C and H isotopic characterization of the produced gas and dissolved methane measured in the aquifer. Neither density of oil/gas wells nor distance to oil/gas wells had a significant impact on methane concentration suggesting other important factors were influencing methane generation and distribution. Thermogenic methane was detected in two aquifer wells indicating a potential contamination pathway from the producing formation, but microbial-origin gas was by far the predominant source of dissolved methane in the Wattenberg field.


Assuntos
Monitoramento Ambiental/métodos , Água Subterrânea/química , Metano/análise , Gás Natural/análise , Campos de Petróleo e Gás , Poluentes Químicos da Água/análise , Colorado , Água Potável/normas , Qualidade da Água , Poços de Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...