Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Cell Environ ; 47(7): 2426-2442, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38497544

RESUMO

Damage caused by the rice striped stem borer (SSB), Chilo suppressalis (Walker) (Lepidoptera: Pyralidae), is much more severe on indica/xian rice than on japonica/geng rice (Oryza sativa) which matches pest outbreak data in cropping regions of China. The mechanistic basis of this difference among rice subspecies remains unclear. Using transcriptomic, metabolomic and genetic analyses in combination with insect bioassay experiments, we showed that japonica and indica rice utilise different defence responses to repel SSB, and that SSB exploited plant nutrition deficiencies in different ways in the subspecies. The more resistant japonica rice induced patterns of accumulation of methyl jasmonate (MeJA-part of a defensive pathway) and vitamin B1 (VB1-a nutrition pathway) distinct from indica cultivars. Using gene-edited rice plants and SSB bioassays, we found that MeJA and VB1 jointly affected the performance of SSB by disrupting juvenile hormone levels. In addition, genetic variants of key biosynthesis genes in the MeJA and VB1 pathways (OsJMT and OsTH1, respectively) differed between japonica and indica rice and contributed to performance differences; in indica rice, SSB avoided the MeJA defence pathway and hijacked the VB1 nutrition-related pathway to promote development. The findings highlight important genetic and mechanistic differences between rice subspecies affecting SSB damage which could be exploited in plant breeding for resistance.


Assuntos
Acetatos , Ciclopentanos , Mariposas , Oryza , Oxilipinas , Oryza/genética , Oryza/parasitologia , Oryza/fisiologia , Animais , Ciclopentanos/metabolismo , Oxilipinas/metabolismo , Mariposas/fisiologia , Acetatos/farmacologia , Acetatos/metabolismo , Regulação da Expressão Gênica de Plantas , Reguladores de Crescimento de Plantas/metabolismo , Defesa das Plantas contra Herbivoria
2.
Chemphyschem ; 19(3): 291-299, 2018 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-29178167

RESUMO

A high light-absorption coefficient and long-range hot-carrier transport of hybrid organic-inorganic perovskites give huge potential to their composites in solar energy conversion and environmental protection. Understanding interfacial interactions and their effects are paramount for designing perovskite-based heterostructures with desirable properties. Herein, we systematically investigated the interfacial interactions in monolayer and few-layer SnS/CH3 NH3 PbI3 heterostructures and their effects on the electronic and optical properties of these structures by density functional theory. It was found that the interfacial interactions in SnS/CH3 NH3 PbI3 heterostructures were van der Waals (vdW) interactions, and they were found to be insensitive to the layer number of 2D SnS sheets. Interestingly, although their band gap decreased upon increasing the layer number of SnS, the near-gap electronic states and optical absorption spectra of these heterostructures were found to be strikingly similar. This feature was determined to be critical for the design of 2D layered SnS-based heterostructures. Strong absorption in the ultraviolet and visible-light regions, type II staggered band alignment at the interface, and few-layer SnS as an active co-catalyst make 2D SnS/CH3 NH3 PbI3 heterostructures promising candidates for photocatalysis, photodetectors, and solar energy harvesting and conversion. These results provide first insight into the nature of interfacial interactions and are useful for designing hybrid organic-inorganic perovskite-based devices with novel properties.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...