Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 917: 170547, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38296097

RESUMO

Microplastics (MPs) transfer from the environment to living organisms is a nonignorable global problem. As a complete metamorphosis insect, the larvae and adult Culex quinquefasciatus mosquito live in aquatic and terrestrial environments, respectively, where they easily access MPs. However, little is known about mosquitoes' potential role in MPs accumulation throughout ecosystems. Therefore, we conducted a study with different MPs particle sizes (0.1/1/10 µm) and concentrations (0.5/5/50 µg/mL) on Cx. quinquefasciatus to address this issue. Once exposed at the young larval stage, MPs could accompany the mosquitoes their entire life. The fluorescence signals of MPs in the larvae were mainly located in the intestines. Its intensity increased (from 3.72 × 106 AU to 5.45 × 107 AU) as the concentrations of MPs increases. The fluorescence signals of MPs were also detected in the blood and skin tissues of mice bitten by adult mosquitoes with MPs containing in their bodies. Mosquitos exposed to MPs showed longer larval pupation and eclosion time as well as lower adult body weight. In addition, MPs significantly reduced the lethal effect of pyrethroid insecticides (97.77 % vs. 48.88 %, p < 0.05) with 15.1 % removal of the deltamethrin concentration. After MPs exposure, the relative abundance of the Cx. quinquefasciatus gut microbiome, such as Wolbachia spp., Elizabethkingia spp., and Asaia spp., changed as the MPs size and concentration changes. Mosquitoes provide a new pathway for MPs accumulation and transfer to higher-level living organisms. Moreover, MPs significantly reduce the control effect of deltamethrin, providing new guidelines for mosquito insecticide application in MPs contamination circumstances.


Assuntos
Culex , Mordeduras e Picadas de Insetos , Inseticidas , Nitrilas , Piretrinas , Animais , Camundongos , Microplásticos , Plásticos , Ecossistema , Inseticidas/toxicidade , Larva , Mamíferos , Controle de Mosquitos
2.
Infect Drug Resist ; 15: 223-232, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35115791

RESUMO

PURPOSE: To elucidate the contribution of a transferable plasmid harboring the bla NDM-1 gene in an Escherichia coli clinical isolate to the spread of resistance determinants. METHODS: Nine extended-spectrum ß-lactamase-producing E. coli were collected from diarrhea samples from a pediatric patient and genetic linkage was investigated through enterobacteriaceae repetitive intragenic consensus polymerase chain reaction (PCR). Bacterial species were identified by 16s rRNA sequencing, susceptibility testing with the use of a BD PhoenixTM-100 Automated Microbiology System, and assessment of virulence genes by PCR. The transferability of bla NDM-1 in E. coli strain TCM3e1 was confirmed by conjugation experiments. Complete sequencing of E. coli strain TCM3e1 was determined with the PacBio and Illumina NovaSeq platforms and the characteristics were analyzed with bioinformatics software. RESULTS: The results showed that all nine E. coli strains were the same clone. E. coli strain TCM3e1 was resistant to 12 antimicrobial agents and carried the virulence gene EAST-1. Conjugation transfer analysis showed that bla NDM-1 was carried on a self-transmissible plasmid. Two copies of the bla NDM-1 gene were present on an IncC plasmid and some resistance genes with two or three copies were located downstream of the bla NDM-1 gene and formed a tandem repeat fragment (bla DNM-1-bleo-sul1- aadA17- dfrA12). CONCLUSION: A transmissible plasmid harboring two copies of the bla NDM-1 gene, including clonal dispersions of the bla NDM-1 gene, was identified in clinical isolates. These findings emphasized the necessity of surveillance of the plasmid-borne bla NDM-1 to prevent dissemination.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...