Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomolecules ; 13(3)2023 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-36979491

RESUMO

Autophagy is a highly conserved process in eukaryotes that degrades and recycles damaged cells in plants and is involved in plant growth, development, senescence, and resistance to external stress. Top-rot disease (TRD) in Rosa roxburghii fruits caused by Colletotrichum fructicola often leads to huge yield losses. However, little information is available about the autophagy underlying the defense response to TRD. Here, we identified a total of 40 R. roxburghii autophagy-related genes (RrATGs), which were highly homologous to Arabidopsis thaliana ATGs. Transcriptomic data show that RrATGs were involved in the development and ripening processes of R. roxburghii fruits. Gene expression patterns in fruits with different degrees of TRD occurrence suggest that several members of the RrATGs family responded to TRD, of which RrATG18e was significantly up-regulated at the initial infection stage of C. fructicola. Furthermore, exogenous calcium (Ca2+) significantly promoted the mRNA accumulation of RrATG18e and fruit resistance to TRD, suggesting that this gene might be involved in the calcium-mediated TRD defense response. This study provided a better understanding of R. roxburghii autophagy-related genes and their potential roles in disease resistance.


Assuntos
Arabidopsis , Rosa , Rosa/genética , Cálcio/metabolismo , Frutas/metabolismo , Perfilação da Expressão Gênica , Arabidopsis/genética , Autofagia/genética
2.
Antibiotics (Basel) ; 11(11)2022 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-36421305

RESUMO

Powdery mildew is an extremely serious disease of all Rosa roxburghii production regions in China and frequently causes 30~40% of economic losses. Natural products are considered excellent alternatives to chemical fungicides. In this work, we investigated the efficacy of physcion used together with chitosan controls R. roxburghii powdery mildew and impacts its resistance, growth, yield, and quality. The results reveal that the foliar application of 12.5 mg L−1 0.5% physcion aqueous solutions (AS) + 250 mg L−1 chitosan efficiently controlled powdery mildew with the efficacies of 92.65% and 90.68% after 7 d and 14 d, respectively, which conspicuously (p < 0.05) higher than 83.62% and 80.43% of 25 mg L−1 0.5% physcion AS, as well as 70.75% and 77.80% of 500 mg L−1 chitosan. Meanwhile, this association prominently ameliorated the resistant and photosynthetic capabilities of R. roxburghii. Simultaneously, this association was more efficient than physcion or chitosan alone for ameliorating the yield and quality of R. roxburghii. This work emphasizes that the association of physcion and chitosan can be nominated as a natural, efficient and environmental-friendly alternative ingredient in controlling R. roxburghii powdery mildew and ameliorating its resistant, photosynthesis, yield, and quality.

3.
Biomolecules ; 12(9)2022 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-36139143

RESUMO

Powdery mildew is the most serious fungal disease of Rosa roxburghii in Guizhou Province, China. In this study, the control role of chitosan-assisted pyraclostrobin against powdery mildew of R. roxburghii and its influences on the resistance, photosynthesis, yield, quality and amino acids of R. roxburghii were evaluated. The results indicate that the foliar application of 30% pyraclostrobin suspension concentrate (SC) 100 mg L−1 + chitosan 500 mg L−1 displayed a superior control potential against powdery mildew, with a control efficacy of 89.30% and 94.58% after 7 d and 14 d of spraying, respectively, which significantly (p < 0.01) exceeded those of 30% pyraclostrobin SC 150 mg L−1, 30% pyraclostrobin SC 100 mg L−1, and chitosan 500 mg L−1. Simultaneously, their co-application could effectively enhance their effect on the resistance and photosynthesis of R. roxburghii leaves compared to their application alone. Meanwhile, their co-application could also more effectively enhance the yield, quality, and amino acids of R. roxburghii fruits compared to their application alone. This work highlights that chitosan can be applied as an effective adjuvant to promote the efficacy of low-dosage pyraclostrobin against powdery mildew in R. roxburghii and improve its resistance, photosynthesis, yield, quality, and amino acids.


Assuntos
Ascomicetos , Quitosana , Rosa , Aminoácidos , Quitosana/farmacologia , Fotossíntese , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Rosa/química , Estrobilurinas
4.
Antibiotics (Basel) ; 10(12)2021 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-34943661

RESUMO

Powdery mildew, caused by Sphaerotheca sp., annually causes severe losses in yield and quality in Rosa roxburghii production areas of southwest China. In this study, the role of the co-application of allicin and chitosan in the resistance of R. roxburghii against powdery mildew and its effects on growth, yield and quality of R. roxburghii were investigated. The laboratory toxicity test results show that allicin exhibited a superior antifungal activity against Sphaerotheca sp. with EC50 value of 148.65 mg kg-1. In the field, the foliar application of allicin could effectively enhance chitosan against powdery mildew with control efficacy of 85.97% by spraying 5% allicin microemulsion (ME) 100-time liquid + chitosan 100-time liquid, which was significantly (p < 0.01) higher than 76.70% of allicin, 70.93% of chitosan and 60.23% of polyoxin. The co-application of allicin and chitosan effectively enhanced the photosynthetic rate and chlorophyll of R. roxburghii compared with allicin, chitosan or polyoxin alone. Moreover, allicin used together with chitosan was more effective than allicin or chitosan alone in enhancing R. roxburghii plant growth and fruit yield as well as improving R. roxburghii fruit quality. This work highlights that the co-application of allicin and chitosan can be used as a green, cost-effective and environmentally friendly alternative strategy to conventional antibiotics for controlling powdery mildew of R. roxburghii.

5.
J Hazard Mater ; 403: 123888, 2021 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-33264954

RESUMO

Bioremediation is commonly conducted by microbial consortia rather than individual species in natural environments. Biodegradation of dicarboximide fungicides in brunisolic soil were significantly enhanced by two bacterial cocultures of Providencia stuartii JD and Brevundimonas naejangsanensis J3. The cocultures degraded 98.42 %, 95.44 %, and 96.81 % of 50 mg/L dimethachlon, iprodione, and procymidone in liquid culture within 6 d respectively, whose efficiency was 1.23 and 1.26, 1.25 and 1.23, and 1.24 and 1.24 times of strains JD and J3, respectively. The cocultures could effectively degrade dimethachlon, iprodione and procymidone to simple products. Moreover, the cocultures immobilized in a charcoal-alginate-chitosan carrier obviously surpassed free cocultures in terms of degradability, stability and reusability. In the field brunisolic soils treated by immobilized cocultures, 96.74 % of 20.25 kg a.i./ha dimethachlon, 95.02 % of 7.50 kg a.i./ha iprodione and 96.27 % of 7.50 kg a.i./ha procymidone were degraded after 7 d, respectively. Moreover, the lower half-lifes (1.53, 1.59 and 1.57 d) by immobilized cocultures were observed, as compared to free cocultures (3.60, 4.03 and 3.92 d) and natural dissipation (21.33, 20.51 and 20.09 d). This study highlights that strains JD and J3 have significant synergetic degradation advantages in rapid bioremediation of dicarboximide fungicide contamination sites.


Assuntos
Caulobacteraceae , Fungicidas Industriais , Biodegradação Ambiental , Técnicas de Cocultura , Providencia
6.
J Hazard Mater ; 398: 122806, 2020 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-32497856

RESUMO

The presence of hazardous dimethomorph residues in the environment poses a threat to birds, aquatic organisms and mammals. The novel pure strain Bacillus cereus WL08 responsible for detoxifying dimethomorph was isolated from dimethomorph-polluted soils. The immobilized system of WL08 was developed using bamboo charcoal (BC) and sodium alginate (SA). Immobilization significantly improved tolerance and stability of strain WL08. Under optimal conditions of pH 7.0 and 30 ℃, free and immobilized WL08 degraded 66.95% and 96.88% of 50 mg/L dimethomorph within 72 h, respectively. Moreover, strain WL08 effectively degraded dimethomorph to simple products which were lower toxic than dimethomorph. In a continuous reactor system, immobilized WL08 removed 85.61% of dimethomorph for 30 d at an influent concentration of 50-100 mg/L. In the field soil sprayed with 4.20 kg a.i./ha 80% dimethomorph water dispersible granule (WDG) was treated by immobilized WL08, the lower half-life (1.93 d) was observed, as compared with free WL08 (4.28 d) and natural dissipation (23.82 d). Immobilized WL08 can be considered as a tool for the removal of dimethomorph in water-soil systems. This study provides a feasible microbe-based strategy for bioremediation of dimethomorph-polluted environments.


Assuntos
Carvão Vegetal , Solo , Alginatos , Animais , Bacillus cereus , Biodegradação Ambiental , Morfolinas , Água
7.
J Environ Manage ; 255: 109848, 2020 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-31756580

RESUMO

Dimethachlon is a hazardous xenobiotic which poses a potential risk on the ecosystem and human health after foliar spray for mitigating fungal diseases of crops. A novel dimethachlon-degrading strain was isolated and identified as Brevundimonas naejangsanensis J3. Free cells and enzymes of this strain could rapidly eliminate 75 mg/L dimethachlon in liquid medium, especially the latter (>90% of degradation efficiency). Strain J3 completely metabolized dimethachlon by an ideally transformed pathway. Immobilization cells and enzymes exhibited better stability and adaptability for the repeated use, as compared with free cells and enzymes. In laboratory, 68.03 and 65.13%, or 82.67 and 95.41% of dimethachlon were eliminated from non-sterile soils by free or immobilized cells and enzymes within 7 d, respectively. Under the field condition, 95.78 and 98.01% of 20.250 kg a.i./ha dimethachlon wettable powder from soils were degraded by immobilized cells and enzymes in 9 d respectively, which were significant higher than the degradation efficiencies of free cells and enzymes (78.81 and 67.25%). This study highlights immobilized cells and enzymes from strain J3 can be applicable for bioremediating dimethachlon-contaminated soils.


Assuntos
Ecossistema , Solo , Caulobacteraceae , Clorobenzenos , Humanos , Succinimidas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...