Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(10)2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38794089

RESUMO

In recent years, optical fibers have found extensive use in special environments, including high-energy radiation scenarios like nuclear explosion diagnostics and reactor monitoring. However, radiation exposure, such as X-rays, gamma rays, and neutrons, can compromise fiber safety and reliability. Consequently, researchers worldwide are focusing on radiation-resistant fiber optic technology. This paper examines optical fiber radiation damage mechanisms, encompassing ionization damage, displacement damage, and defect centers. It also surveys the current research on radiation-resistant fiber optic design, including doping and manufacturing process improvements. Ultimately, it summarizes the effectiveness of various approaches and forecasts the future of radiation-resistant optical fibers.

2.
PLoS One ; 7(7): e37126, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22792156

RESUMO

Cell reprogramming for microorganisms via engineered or artificial transcription factors and RNA polymerase mutants has presented a powerful tool for eliciting complex traits that are practically useful particularly for industrial strains, and for understanding at the global level the regulatory network of gene transcription. We previously further showed that an exogenous global regulator IrrE (derived from the extreme radiation-resistant bacterium Deinococcus radiodurans) can be tailored to confer Escherichia coli (E. coli) with significantly enhanced tolerances to different stresses. In this work, based on comparative transcriptomic and proteomic analyses of the representative strains E1 and E0, harboring the ethanol-tolerant IrrE mutant E1 and the ethanol-intolerant wild type IrrE, respectively, we found that the transcriptome and proteome of E. coli were extensively rewired by the tailored IrrE protein. Overall, 1196 genes (or approximately 27% of E. coli genes) were significantly altered at the transcriptomic level, including notably genes in the nitrate-nitrite-nitric oxide (NO) pathway, and genes for non-coding RNAs. The proteomic profile revealed significant up- or downregulation of several proteins associated with syntheses of the cell membrane and cell wall. Analyses of the intracellular NO level and cell growth under reduced temperature supported a close correlation between NO and ethanol tolerance, and also suggests a role for membrane fluidity. The significantly different omic profiles of strain E1 indicate that IrrE functions as a global regulator in E. coli, and that IrrE may be evolved for other cellular tolerances. In this sense, it will provide synthetic biology with a practical and evolvable regulatory "part" that operates at a higher level of complexity than local regulators. This work also suggests a possibility of introducing and engineering other exogenous global regulators to rewire the genomes of microorganism cells.


Assuntos
Escherichia coli/genética , Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , Proteoma , Transcriptoma , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Transporte Biológico , Escherichia coli/efeitos dos fármacos , Perfilação da Expressão Gênica , Glicerol/farmacologia , Transporte de Íons , Nitratos/metabolismo , Óxido Nítrico/metabolismo , Nitritos/metabolismo , Oxirredução , Fosforilação , Espécies Reativas de Oxigênio/metabolismo , Ribossomos/metabolismo , Transdução de Sinais , Estresse Fisiológico , Temperatura , Triptofano/metabolismo
3.
PLoS One ; 6(1): e16228, 2011 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-21267412

RESUMO

BACKGROUND: The tolerance of cells toward different stresses is very important for industrial strains of microbes, but difficult to improve by the manipulation of single genes. Traditional methods for enhancing cellular tolerances are inefficient and time-consuming. Recently, approaches employing global transcriptional or translational engineering methods have been increasingly explored. We found that an exogenous global regulator, irrE from an extremely radiation-resistant bacterium, Deinococcus radiodurans, has the potential to act as a global regulator in Escherichia coli, and that laboratory-evolution might be applied to alter this regulator to elicit different phenotypes for E. coli. METHODOLOGY/PRINCIPAL FINDINGS: To extend the methodology for strain improvement and to obtain higher tolerances toward different stresses, we here describe an approach of engineering irrE gene in E. coli. An irrE library was constructed by randomly mutating the gene, and this library was then selected for tolerance to ethanol, butanol and acetate stresses. Several mutants showing significant tolerances were obtained and characterized. The tolerances of E. coli cells containing these mutants were enhanced 2 to 50-fold, based on cell growth tests using different concentrations of alcohols or acetate, and enhanced 10 to 100-fold based on ethanol or butanol shock experiments. Intracellular reactive oxygen species (ROS) assays showed that intracellular ROS levels were sharply reduced for cells containing the irrE mutants. Sequence analysis of the mutants revealed that the mutations distribute cross all three domains of the protein. CONCLUSIONS: To our knowledge, this is the first time that an exogenous global regulator has been artificially evolved to suit its new host. The successes suggest the possibility of improving tolerances of industrial strains by introducing and engineering exogenous global regulators, such as those from extremophiles. This new approach can be applied alone or in combination with other global methods, such as global transcriptional machinery engineering (gTME) for strain improvements.


Assuntos
Deinococcus/genética , Deinococcus/fisiologia , Evolução Molecular Direcionada , Escherichia coli/fisiologia , Microbiologia Industrial/métodos , Elementos Reguladores de Transcrição/genética , Estresse Fisiológico/genética , Escherichia coli/genética , Biblioteca Gênica , Mutação , Espécies Reativas de Oxigênio/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...