Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Vet Microbiol ; 290: 109973, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38211361

RESUMO

Newcastle disease virus (NDV) is an RNA virus that can promote its own replication through the inhibition of cellular mitochondrial fusion. The proteins involved in mitochondrial fusion, namely mitofusin 1 (Mfn1) and optic atrophy 1 (OPA1) are associated with interferon-beta (IFN-ß) secretion during NDV infection. However, the precise mechanism by which NDV modulates the Mfn1-mediated or OPA1-mediated fusion of mitochondria, thereby impacting IFN-ß, remains elusive. This study revealed that the downregulation of the mitochondrial protein known as coiled-coil-helix-coiled-coil-helix domain containing 10 (CHCHD10) exerts a negative regulatory effect on OPA1 and Mfn1 in human lung adenocarcinoma (A549) cells during the late stage of NDV infection. This reduction in CHCHD10 expression impeded cellular mitochondrial fusion, subsequently leading to a decline in the activation of interferon regulatory factor 3 (IRF3) and nuclear factor kappa B (NF-κB), ultimately resulting in diminished secretion of IFN-ß. In contrast, the overexpression of CHCHD10 alleviated infection-induced detrimental effect in mitochondrial fusion, thereby impeding viral proliferation. In summary, NDV enhances its replication by inhibiting the CHCHD10 protein, which impedes mitochondrial fusion and suppresses IFN-ß production through the activation of IRF3 and NF-κB.


Assuntos
NF-kappa B , Vírus da Doença de Newcastle , Humanos , Animais , Vírus da Doença de Newcastle/genética , NF-kappa B/genética , NF-kappa B/metabolismo , Dinâmica Mitocondrial , Interferon beta/genética , Interferon beta/metabolismo , Proliferação de Células , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo
2.
Vet Microbiol ; 290: 109986, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38244394

RESUMO

Newcastle disease (ND) is a disease that threatens the world's poultry industry, which is caused by virulent Newcastle disease virus (NDV). As its pathogenic mechanism remains not fully clear, the proteomics of NDV-infected cells were analyzed. The results revealed that coiled-coil-helix-coiled-coil-helix domain containing 10 (CHCHD10) protein displayed a significant decrease at the late stage of NDV infection. To investigate the function of CHCHD10 in NDV infection, its expression after NDV infection was detected both in vivo and in vitro. Besides, the tissue viral loads and pathological damage of C57BL/6 mice with CHCHD10 differently expressed were also investigated. The results showed that the CHCHD10 expression was significantly decreased both in vivo and in vitro at the late stage of NDV infection. The viral loads were significantly higher in CHCHD10 silenced C57BL/6 mice, along with more severe pathological damage and vice versa.


Assuntos
Doença de Newcastle , Doenças das Aves Domésticas , Doenças dos Roedores , Camundongos , Animais , Vírus da Doença de Newcastle/genética , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Camundongos Endogâmicos C57BL , Aves Domésticas , Galinhas
3.
Vaccine ; 42(2): 332-338, 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38065771

RESUMO

Newcastle disease (ND) and infectious bursal disease (IBD) pose significant threats to the chicken industry, causing substantial economic losses. Currently, immunization through vaccination is the most effective strategy to prevent ND and IBD but currently used traditional vaccines, including inactivated or attenuated vaccines, face challenges in achieving a balance between immunogenicity and safety. To develop a green and efficient novel vaccine for ND and IBD, we developed a bivalent chimeric virus-like particle vaccine (ND-IBD cVLPs) displaying the ND virus (NDV) HN protein and the IBD virus (IBDV) VP2 protein based on the ND VLPs carrier platform and insect baculovirus expression system. This study aimed to evaluate the immunogenicity and protective efficacy of ND-IBD cVLPs in specific pathogen-free chickens. Chickens were immunized with 50 µg of purified ND-IBD cVLPs at 7 days old, boosted at 21 days old, and challenged at 42 days old. The results demonstrated that ND-IBD cVLPs stimulated highly effective hemagglutination inhibition antibody levels against NDV HN protein and enzyme-linked immunosorbent assay antibody levels against the IBDV VP2 protein. Furthermore, ND-IBD cVLPs provided complete protection against virulent NDV and IBDV challenges and mitigated pathological damage to the lung caused by NDV infection and the bursa of Fabricius caused by IBDV infection. These findings suggest that ND-IBD cVLPs hold promise as a safe and efficient novel vaccine candidate for the effective prevention of ND and IBD, extending the development of a foreign protein delivery platform of ND VLPs.


Assuntos
Infecções por Birnaviridae , Vírus da Doença Infecciosa da Bursa , Doença de Newcastle , Doenças das Aves Domésticas , Vacinas de Partículas Semelhantes a Vírus , Vacinas Virais , Animais , Galinhas , Proteína HN , Anticorpos Antivirais , Vírus da Doença de Newcastle/genética , Doença de Newcastle/prevenção & controle , Infecções por Birnaviridae/prevenção & controle , Infecções por Birnaviridae/veterinária
4.
Biochim Biophys Acta Mol Basis Dis ; 1869(6): 166740, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37142133

RESUMO

Phenethyl isothiocyanate (PEITC), a kind of isothiocyanate available in cruciferous vegetables, exhibits inhibitory effects on cancers. PEITC has been extensively recorded for its effect on regulation of redox status in cancer cells. Our previous studies revealed that PEITC induced ROS-dependent cell death in osteosarcoma. Mitochondria are the main sites for ROS generation and play significant role in deciding cell fate. To dissect the mechanism of PEITC's action on osteosarcoma cells, we detected the changes on mitochondrial network, function and metabolism in K7M2 and 143B cells. Here, PEITC induced cytosolic, lipid and mitochondrial ROS production in osteosarcoma cells. It changed mitochondrial morphology from elongated to punctate network and decreased mitochondrial mass. Meantime, PEITC increased mitochondrial transmembrane potential in short time, decreased it with time prolonged, and later collapsed it in K7M2 cells, and reduced it in 143B cells. PEITC inhibited proliferation potential of osteosarcoma cells with damage on mitochondrial respiratory chain complexes. Further, PEITC-treated osteosarcoma cells experienced a sudden increase in ATP level, and later its content was decreased. Moreover, PEITC downregulated the expressions of mitochondrial respiratory chain complexes including COX IV, UQCR, SDHA and NDUFA9 in 143B cells and COX IV in K7M2 cells. At last, by using ρ0 cells derived from K7M2 and 143B cells, we found that osteosarcoma cells that depleted mtDNA were less sensitive to PEITC-induced changes on cellular morphology, cytoskeleton filament, mitochondrial transmembrane potential and ROS generation. In conclusion, our study demonstrated that mitochondria may play important role in PEITC-induced oxidative cell death in osteosarcoma cells.


Assuntos
Apoptose , Osteossarcoma , Humanos , Espécies Reativas de Oxigênio/metabolismo , Linhagem Celular Tumoral , Morte Celular , Isotiocianatos/farmacologia , Mitocôndrias/metabolismo , Estresse Oxidativo , Oxirredução , Osteossarcoma/tratamento farmacológico , Osteossarcoma/metabolismo
5.
Virus Res ; 323: 198993, 2023 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-36326508

RESUMO

N6-methyladenosine (m6A) modification, the most prevalent post-transcriptional modification of eukaryotic mRNAs, is reported to play a crucial role in viral infection. However, the role of m6A modification during Newcastle disease virus (NDV) infection has remained unclear. In this study, we performed MeRIP-seq to investigate the transcriptome-wide m6A methylome and m6A-modified genes in NDV-infected chicken macrophages. A total of 9496 altered peaks were identified, of which 7015 peaks were significantly upregulated across 3320 genes, and 2481 peaks were significantly down-regulated across 1264 genes. Combined analysis of m6A peaks and mRNA expression showed that 1234 mRNAs had significantly altered levels of methylation and expression after NDV infection, and m6A modification tended to have a negative relationship with mRNA expression, suggesting that m6A modification may regulate the process of NDV infection by regulating gene expression, particularly of the genes important in the innate immune response. To the best of our knowledge, this is the first comprehensive characterization of m6A patterns in chicken macrophage mRNA after NDV infection, providing a valuable basis for further exploring the role of m6A modification mechanisms during the course of NDV infection.

6.
Can J Gastroenterol Hepatol ; 2022: 2033876, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35531124

RESUMO

The lung is the most common extra-abdominal metastasis site of colorectal cancer (CRC). This study aimed to investigate the genetic variation of pulmonary metastases (PM) and primary tumors in resectable CRC. The clinical data of 410 patients with PM after CRC surgery and 33 paraffin-embedded tissue samples from January 2012 to July 2019 in our hospital were collected retrospectively. Next, 450-panel gene detection technologies based on next-generation sequencing (NGS) were used to analyze the changes in the gene map and the overall variation in cancer-related genes in PM and primary tumors. After quality control, 19 samples were included in the final gene analysis. The results showed that APC (89.5%), TP53 (89.5%), and KRAS (53%) were the most common mutations in PM and primary tumors, but the gene amplification variation was enriched in primary tumors (4.6% vs. 11.4%). KRAS G12D was the most common site variation of the KRAS gene in both PM and primary tumors of CRC. There was no hotspot mutation in the TP53 locus in CRC, and the TP53 mutation in the PM was consistent with that in the primary lesion. The microsatellite instability (MSI) levels of 10 patients were MSS. The mean tumor mutation burden (TMB) of the primary tumor (5.3 muts·Mb-1) was slightly higher than that of metastasis (5.0 muts·Mb-1). In our institution, the genetic characteristics of resectable PM from CRC may be highly consistent with those of the primary tumor.


Assuntos
Neoplasias Colorretais , Neoplasias Pulmonares , Proteína da Polipose Adenomatosa do Colo/genética , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Neoplasias Colorretais/cirurgia , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/secundário , Instabilidade de Microssatélites , Mutação , Proteínas Proto-Oncogênicas p21(ras)/genética , Estudos Retrospectivos , Proteína Supressora de Tumor p53/genética
7.
Cancer Manag Res ; 12: 2315-2325, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32273768

RESUMO

PURPOSE: The purpose of this study is to evaluate the short-term clinical and oncological outcome of prolonging operation interval to 11 weeks after the end of radiotherapy for locally advanced middle and low rectal cancer. METHODS: A total of 123 patients with stage II/III (cT3/T4 or N+) low and middle rectal cancer who had undergone operation after neoadjuvant chemoradiotherapy were selected. According to the interval time between the last radiotherapy and operation, they were assigned to a short-interval group (SG, <11 weeks, n=66) and long-interval group (LG, ≥11 weeks, n=57). The relations among interval time and short-term clinical outcome and oncological outcome were analyzed. RESULTS: The analysis found that basic information, clinical characteristics, and preoperative treatment between the two groups had no significant difference. There were no differences in operation time, estimated intraoperative blood loss and postoperative complications. The rate of sphincter preservation in the low and middle rectum was 66.7% in the short-interval group and 59.7% in the long-interval group (P=0.42). The incidence of anastomotic leak in the long-interval group was higher than that in the short-interval group (P=0.08). There was no significant difference in the recovery time of intestinal function and median duration of hospitalization between the two groups. The pathological complete remission rate was 17.07%. Multivariate analysis showed interval time had no influence on pathological complete remission. There was no significant difference in 3-year overall survival and 3-year disease-free survival between the two groups. The risk of recurrence and metastasis in patients with positive lymph nodes was higher than those with negative lymph nodes (P<0.05), HR=4.812 (95% CI 2.4-9.648). CONCLUSION: Prolonging the interval time of operation to 11 weeks after neoadjuvant chemoradiotherapy for middle and low rectal cancer does not improve the pathologic complete remission, morbidity, and mortality. There was no significant effect on oncologic outcome after prolonging the operation interval. Therefore, it is safe to prolong the interval of operation to 11 weeks.

8.
Virol Sin ; 35(4): 455-467, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32274680

RESUMO

Newcastle disease virus (NDV) and H9N2 subtype Avian influenza virus (AIV) are two notorious avian respiratory pathogens that cause great losses in the poultry industry. Current inactivated commercial vaccines against NDV and AIV have the disadvantages of inadequate mucosal responses, while an attenuated live vaccine bears the risk of mutation. Dendritic cell (DC) targeting strategies are attractive for their potent mucosal and adaptive immune-stimulating ability against respiratory pathogens. In this study, DC-binding peptide (DCpep)-decorated chimeric virus-like particles (cVLPs), containing NDV haemagglutinin-neuraminidase (HN) and AIV haemagglutinin (HA), were developed as a DC-targeting mucosal vaccine candidate. DCpep-decorated cVLPs activated DCs in vitro, and induced potent immune stimulation in chickens, with enhanced secretory immunoglobulin A (sIgA) secretion and splenic T cell differentiation. 40 µg cVLPs can provide full protection against the challenge with homologous, heterologous NDV strains, and AIV H9N2. In addition, DCpep-decorated cVLPs could induce a better immune response when administered intranasally than intramuscularly, as indicated by robust sIgA secretion and a reduced virus shedding period. Taken together, this chimeric VLPs are a promising vaccine candidate to control NDV and AIV H9N2 and a useful platform bearing multivalent antigens.


Assuntos
Vírus da Influenza A Subtipo H9N2/imunologia , Influenza Aviária/prevenção & controle , Doença de Newcastle/prevenção & controle , Vírus da Doença de Newcastle/imunologia , Vacinas de Partículas Semelhantes a Vírus/imunologia , Animais , Anticorpos Antivirais/sangue , Galinhas/virologia , Células Dendríticas/imunologia , Imunoglobulina A/imunologia , Vacinas contra Influenza/administração & dosagem , Vacinas contra Influenza/imunologia , Influenza Aviária/imunologia , Doença de Newcastle/imunologia , Doença de Newcastle/virologia , Vírus da Doença de Newcastle/genética , Organismos Livres de Patógenos Específicos , Linfócitos T/imunologia , Vacinas Atenuadas , Vacinas de Partículas Semelhantes a Vírus/genética , Eliminação de Partículas Virais
9.
Microb Pathog ; 139: 103831, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31682996

RESUMO

Newcastle disease (ND) is a serious avian infectious disease, causing severe economic loss worldwide. Its prevention depends on comprehensive vaccination scheme against Newcastle disease virus (NDV). However, current vaccine strains are of different genotypes with prevalent circulating strains (genotype VII), with significant genetic distance. Our team previously generated a genotype matched attenuated NDV strain (rmNA-1). In this study, its safety and immunization efficacy were evaluated. Its lentogenic characteristic was stable for 25 generations in embryonated chicken eggs and for six generations in SPF chickens. Overdosed administration did not cause any clinical signs or pathogenic changes in chickens. As to its immunization effect, rmNA-1 stimulated a comparable serum NDV specific antibody level to a LaSota (genotype II) strain based commercial vaccine, and provided full protection against virulent genotype VII strain challenge, with significantly reduced virus shedding period.


Assuntos
Doença de Newcastle/imunologia , Vírus da Doença de Newcastle/genética , Vacinação , Animais , Anticorpos Antivirais/sangue , Galinhas/imunologia , Galinhas/virologia , Genótipo , Testes de Sensibilidade Microbiana , Doença de Newcastle/virologia , Vírus da Doença de Newcastle/isolamento & purificação , Doenças das Aves Domésticas/imunologia , Doenças das Aves Domésticas/virologia , Vacinas Atenuadas/imunologia , Proteínas Virais de Fusão/genética , Proteínas Virais de Fusão/metabolismo , Vacinas Virais/imunologia , Eliminação de Partículas Virais
10.
Vet Microbiol ; 229: 39-47, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30642597

RESUMO

Brucellosis is a widespread zoonosis that poses a substantial threat to human and animal public health due to the absence of a sufficiently safe and efficient vaccine. Virus-like particles (VLPs) have been developed as novel vaccine candidates and suitable carrier platforms for the delivery of exogenous proteins. Herein, we constructed chimeric virus-like particles (cVLPs) assembled by a Newcastle disease virus (NDV) M protein and glycosylphosphatidylinositol-anchored Brucella BCSP31 protein (GPI-BCSP31). cVLPs-GPI-BCSP31 were highly efficient in murine dendritic cell (DC) activation, both in vitro and in vivo. Moreover, they elicited strong specific humoural immune responses detected through ELISA assay with inactivated Brucella and recombinant BCSP31 protein and by elevated cellular immune responses indicated by intracellular IFN-γ and IL-4 levels in CD3+CD4+ T and CD3+CD8+ T cells. Importantly, cVLPs-GPI-BCSP31 conferred protection against virulent Brucella melitensis strain 16 M challenge, comparable to the efficacy of Brucella vaccine strain M5. In summary, this study provides a new strategy for the development of a safe and effective vaccine candidate against virulent Brucella and further extends the application of NDV VLP-based vaccine platforms.


Assuntos
Proteínas de Bactérias/imunologia , Vacinas Bacterianas/imunologia , Brucella/metabolismo , Brucelose/prevenção & controle , Células Dendríticas/fisiologia , Vírus da Doença de Newcastle , Animais , Brucella/imunologia , Brucella/patogenicidade , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Distribuição Aleatória , Virulência
11.
Microb Pathog ; 128: 414-422, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30597256

RESUMO

Exosomes are micro messengers encapsulating RNA, DNA, and proteins for intercellular communication associated with various physiological and pathological reactions. Several viral infection processes have been reported to pertain to exosomal pathways. However, because of the difficulty in obtaining avian-sourced exosomes, avian virus-related exosomes are scarcely investigated. In this study, we developed a protein A/G-correlated method and successfully obtained the Newcastle disease virus-related exosome (NDV Ex). These exosomes promoted NDV propagation, proven by both GW4869-mediated deprivation and exosomal supplementation. Viral structural proteins NP and F were detected in the NDV Ex and further investigation indicated that the NP protein can be transferred to DF-1 cells through exosomes. The intracellular NP protein exhibited viral replication-promoting and cytokine-suppressing abilities. Therefore, NDV infection produces exosomes, which transfer viral NP protein and promote NDV infection, emphasizing the importance of exosomes in an NDV infection.


Assuntos
Exossomos/metabolismo , Vírus da Doença de Newcastle/fisiologia , Vírus da Doença de Newcastle/patogenicidade , Estruturas Virais/isolamento & purificação , Estruturas Virais/metabolismo , Replicação Viral , Animais , Linhagem Celular , Galinhas , Citocinas/metabolismo , Humanos , Vírus da Doença de Newcastle/crescimento & desenvolvimento , Proteínas do Nucleocapsídeo , Nucleoproteínas/isolamento & purificação , Nucleoproteínas/metabolismo , Proteínas Recombinantes , Tetraspanina 28/genética , Tetraspanina 28/metabolismo , Tetraspanina 30/genética , Tetraspanina 30/metabolismo , Proteínas Virais de Fusão/isolamento & purificação , Proteínas Virais de Fusão/metabolismo , Proteínas Virais/genética , Proteínas Virais/isolamento & purificação , Proteínas Virais/metabolismo
12.
Vaccine ; 37(3): 444-451, 2019 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-30545716

RESUMO

Newcastle disease (ND) is one of the most severe avian infectious disease inflicting a great loss on poultry industry worldwide. The control of ND relies on proper vaccination strategies. The vaccine strains of Newcastle disease virus (NDV) mainly belong to genotype I, II or III, which cannot fully prohibit virus shedding against the prevalent genotype VII virulent strain attack. To develop a safe, genotype matched vaccine candidate, we employed a bac-to-bac expression system and constructed a genotype VII NDV strain based virus-like particles (NDV VLPs). It was constructed with NDV M protein as the skeleton, and protective antigen F and HN proteins displayed on the surface. The NDV VLPs exhibited a similar appearance to the live NDV particles, but with denser F and HN proteins displayed on the surface. The immunization assay indicated that NDV VLPs stimulated a longer protection period, less tissue virus loading and shorter virus shedding period than the commercialized LaSota-formulated vaccine when challenged with genotype VII NDV strain. These results proposed the potential role of NDV VLPs as an alternative to current live genotype unmatched vaccine for the control and eliminate NDV in the avian flocks.


Assuntos
Doença de Newcastle/prevenção & controle , Doenças das Aves Domésticas/prevenção & controle , Vacinas de Partículas Semelhantes a Vírus/imunologia , Carga Viral , Vacinas Virais/imunologia , Eliminação de Partículas Virais , Animais , Anticorpos Antivirais/imunologia , Galinhas , Genótipo , Vírus da Doença de Newcastle/genética , Doenças das Aves Domésticas/virologia , Vacinação , Vacinas Atenuadas/imunologia , Proteínas Virais de Fusão/genética , Proteínas Virais de Fusão/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...