Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Risk Anal ; 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38851300

RESUMO

In this paper, we develop a generic framework for systemically encoding causal knowledge manifested in the form of hierarchical causality structure and qualitative (or quantitative) causal relationships into neural networks to facilitate sound risk analytics and decision support via causally-aware intervention reasoning. The proposed methodology for establishing causality-informed neural network (CINN) follows a four-step procedure. In the first step, we explicate how causal knowledge in the form of directed acyclic graph (DAG) can be discovered from observation data or elicited from domain experts. Next, we categorize nodes in the constructed DAG representing causal relationships among observed variables into several groups (e.g., root nodes, intermediate nodes, and leaf nodes), and align the architecture of CINN with causal relationships specified in the DAG while preserving the orientation of each existing causal relationship. In addition to a dedicated architecture design, CINN also gets embodied in the design of loss function, where both intermediate and leaf nodes are treated as target outputs to be predicted by CINN. In the third step, we propose to incorporate domain knowledge on stable causal relationships into CINN, and the injected constraints on causal relationships act as guardrails to prevent unexpected behaviors of CINN. Finally, the trained CINN is exploited to perform intervention reasoning with emphasis on estimating the effect that policies and actions can have on the system behavior, thus facilitating risk-informed decision making through comprehensive "what-if" analysis. Two case studies are used to demonstrate the substantial benefits enabled by CINN in risk analytics and decision support.

2.
Microbiol Spectr ; 10(6): e0121522, 2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36377898

RESUMO

Using high-throughput sequencing, this study aimed to explore the response of soil microbial community and Chinese baby cabbage yield to the reduction of chemical fertilizers combined with bio-organic fertilizer. Our experiments consisted of conventional fertilizer (CK), 30% chemical fertilizer reduction + 6,000 kg/ha bio-organic fertilizer (T1), 30% chemical fertilizer reduction + 9,000 kg/ha bio-organic fertilizer (T2), 40% chemical fertilizer reduction + 6,000 kg/ha bio-organic fertilizer (T3), and 40% chemical fertilizer reduction + 9,000 kg/ha bio-organic fertilizer (T4). Compared with CK, soil microbial diversity and richness were higher for all treatments with added bio-organic fertilizer. Principle coordinate analysis (PCoA) showed that the bacterial and fungal communities in T2 and T4 were similar to each other. Redundancy and Spearman's correlation analyses of microbial communities and soil physicochemical properties revealed that reductions in chemical fertilizer rate combined with bio-organic fertilizer had a stronger impact on the fungal than the bacterial community. They also increased the relative abundance of the dominant bacterial and fungal phyla. Chinese baby cabbage yield was relatively higher under the combined bio-organic fertilizer plus reduced chemical fertilizer rate with T2 showing the highest yield. Therefore, this approach is feasible for sustainable agricultural, cost-effective and profitable crop production. IMPORTANCE Chemical fertilizers are commonly used for agriculture, though bio-organic fertilizers may be more efficient. We found that a mixture of bio-organic and moderately reduced chemical fertilizer was more effective than chemical fertilizer alone, as it raised the Chinese baby cabbage yield. Further, the presence of bio-organic fertilizer enhanced overall soil physicochemistry, as well as improved the beneficial bacterial and fungal abundance and diversity. Thus, we found that fertilizer combination sustainably & cost-effectively improves crop & soil quality.


Assuntos
Brassica , Solo , Agricultura , Bactérias , Fertilizantes/análise , Solo/química , Microbiologia do Solo
3.
Int J Mol Sci ; 23(21)2022 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-36362363

RESUMO

Nanmu (Phoebe zhennan) is an extremely valuable tree plant that is the main source of famous "golden-thread nanmu" wood. The potential metabolites and gene regulation mechanisms involved in golden thread formation are poorly understood, even though the color change from sapwood to heartwood has been investigated in several tree plants. Here, five radial tissues from sapwood to heartwood were compared via integrative metabolomic and transcriptomic analysis to reveal the secondary metabolites and molecular mechanisms involved in golden thread formation. During heartwood formation, gradual starch grain loss is accompanied by the cell lumen deposition of lipids and color-related extractives. Extractives of 20 phenylpropanoids accumulated in heartwood, including cinnamic acids and derivatives, coumarin acid derivatives, and flavonoids, which were identified as being closely related to the golden thread. Phenylpropanoids co-occurring with abundant accumulated metabolites of prenol lipids, fatty acyls, steroids, and steroid derivatives may greatly contribute to the characteristics of golden thread formation. Additionally, the expression of nine genes whose products catalyze phenylpropanoid and flavonoids biosynthesis was upregulated in the transition zone, then accumulated and used to color the heartwood. The expression levels of transcription factors (e.g., MYB, bHLH, and WRKY) that act as the major regulatory factors in the synthesis and deposition of phenylpropanoid and flavonoids responsible for golden thread formation were also higher than in sapwood. Our results not only explain golden thread formation in nanmu, but also broaden current knowledge of special wood color formation mechanisms. This work provides a framework for future research focused on improving wood color.


Assuntos
Lauraceae , Transcriptoma , Madeira/química , Perfilação da Expressão Gênica , Árvores/genética , Flavonoides/metabolismo , Lauraceae/genética
4.
Ying Yong Sheng Tai Xue Bao ; 33(7): 1901-1910, 2022 Jul.
Artigo em Chinês | MEDLINE | ID: mdl-36052794

RESUMO

To determine the mitigating effects of exogenous melatonin on salt-alkali stress in cucumber, we mea-sured photosynthetic characteristics and osmoregulatory substance content of cucumber leaves under salt-alkali stress, using 'Xinchun 4' cucumber as the test material and a salt-alkali complex (NaCl:Na2SO4:Na2CO3:NaHCO3 = 1:9:1:9) to simulate stress. The results showed that compared with the normal seedlings, the exogenous application of 10 µmol·L-1 melatonin significantly increased the contents of chlorophyll, soluble sugar, and soluble protein, as well as net photosynthetic rate, stomatal conductance, transpiration rate, photosystem Ⅱ maximum photochemical efficiency, actual photochemical efficiency, apparent photosynthetic electron transfer rate, and photochemical burst coefficient of cucumber seedlings under 40 mmol·L-1 salt-alkali stress, but decreased intercellular CO2 concentration, non-photochemical burst coefficient, and sucrose, fructose, starch, and proline contents by 11.1%, 13.8%, 12.7%, 27.5%, 1.3% and 32.8%, respectively. Moreover, the activities of key enzymes for carbon assimilation (including ribulose-1,5-bisphosphate carboxylase/oxygenase and fructose-1,6-bisphosphate esterase) were significantly increased, whereas the mRNA expression levels of Rubisco subunits (CsrbcS and CsrbcL), CsFBA, CsRCA, CsFBPase and CsTK were downregulated. In conclusion, exogenous melatonin could increase the contents of chlorophyll and osmoregulatory substance, photosynthetic chemical efficiency, and key carbon assimilation enzyme activities of cucumber seedlings under salt-alkali stress, thereby enhance photosynthetic capacity and reduce the stress-induced plant damage. The results would provide theoretical basis for anti-saline plant cultivation.


Assuntos
Cucumis sativus , Melatonina , Álcalis , Carbono/metabolismo , Clorofila/metabolismo , Frutose/metabolismo , Frutose/farmacologia , Melatonina/farmacologia , Fotossíntese , Folhas de Planta/metabolismo , Plântula , Cloreto de Sódio/farmacologia
5.
Front Nutr ; 9: 888728, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35571943

RESUMO

To evaluate the impact of straw mulching on the production of open field loose-curd cauliflower, this study analyzed the "Feicui No.9" cauliflower variety, grown in field trials in Northwest China, in 2019 and 2020. Plots in an open field were prepared without mulch (CK1) and with plastic film mulch (CK2), as experimental controls, along with three experimental mulching methods, including dual straw and plastic film mulch (T1), inter-row straw mulch (T2), and full straw mulch (T3). The effects of the different ground cover alternatives on loose-curd cauliflower's dry matter accumulation, yield, quality, and volatile compounds, were explored. The results showed that, compared with CK2 treatment, T1 treatment promoted the accumulation of dry matter, and increased the economic and biological yield, by 12.98 and 6.51%, respectively. The soluble sugar and vitamin C content in loose-curd cauliflower heads, subjected to T1 treatment, increased by 18.46 and 8.12%, respectively, and the nitrate content decreased by 25.57%. Moreover, the T1, T2, and T3 treatments significantly increased the levels of macro-, meso-, and microelements. Headspace solid-phase microextraction-gas chromatography-mass spectrometry (HS-SPME-GC-MS) was used to determine the volatile substances in loose-curd cauliflower heads from the 2020 harvesting period. Detected compounds included 17 aldehydes, 15 ketones, 10 alcohols, 15 esters, 29 hydrocarbons, 12 nitrogen-containing compounds, and 17 other substances. T1, T2, and T3 treatments increased the volatile substance content, whereas T1 treatment increased the quantity of volatile substances. In summary, dual mulching with straw and plastic film could promote dry matter accumulation, significantly increase the yield and quality, and effectively improve the flavor of loose-curd cauliflower. This mulching technique can be applied to open field vegetable and corn production areas, providing technical and theoretical support for the realization of high-yield, high-quality production models and a new straw recycling method.

6.
Front Microbiol ; 13: 863325, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35531292

RESUMO

Reducing chemical fertilizers in combination with bio-organic fertilizers can limit the use of chemical fertilizers while maintaining soil fertility. However, the effects of combined fertilization on soil chemical properties, microbial community structure, and crop yield and quality are unknown. Using high-throughput sequencing, we conducted field experiments using lettuce plants subjected to five fertilization treatments: chemical fertilizer with conventional fertilization rate (CK), chemical fertilizer reduction by 30% + 6,000 kg ha-1 bio-organic fertilizer (T1), chemical fertilizer reduction by 30% + 9,000 kg ha-1 bio-organic fertilizer (T2), chemical fertilizer reduction by 40% + 6,000 kg ha-1 bio-organic fertilizer (T3), and chemical fertilizer reduction by 40% + 9,000 kg ha-1 bio-organic fertilizer (T4). Compared with CK, the T1-T4 had significantly higher soil pH and soil organic matter (SOM) and showed increased richness and diversity of the bacterial community, and decreased richness and diversity of the fungal community. Principal coordinate analysis evidenced that the bacterial and fungal communities of CK and T1-T4 were distinctly separated. The Kruskal-Wallis H-test demonstrated that the fungal community was more sensitive than the bacterial community to chemical fertilizer reduction combined with bio-organic fertilizer. Among the soil chemical parameters measured, only TN (total nitrogen) was significantly correlated with bacterial and fungal community composition. The T1 and T2 increased lettuce yield. Moreover, T1-T4 characterized reduced nitrate content and increased levels of soluble sugars and vitamin C in lettuce. Overall, the combined application of reduced chemical fertilizer and bio-organic fertilizer effectively improved soil fertility, microbial community structure, and lettuce yield and quality. These findings have valuable implications for vegetable safety and long-term environmental sustainability.

7.
Ecotoxicol Environ Saf ; 217: 112248, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-33901782

RESUMO

Melatonin (Mel), a powerful antioxidant that has the ability to regulate physiological and biochemical processes in plants under abiotic stresses. However, its roles in pesticide detoxification is poorly understood. Herein, selecting leaf spraying insecticide imidacloprid (IMD) as the model, we demonstrated the detoxification mechanism underlying root pretreatment of Mel on IMD in cucumber. IMD treatment affected the primary light conversion efficiency of photosystem II (Fv/Fm), reduced the quantum yield, and increased hydrogen peroxide and superoxide anions contents as well as the levels of membrane lipid peroxidation, indicating that excessive IMD treatment induces oxidative stress. Nonetheless, by increasing the appropriate levels of exogenous Mel, the photosynthesis of cucumber under IMD treatment reached the control levels, effectively removing reactive oxygen species. Furthermore, the content and ratio of ascorbate (AsA) and glutathione (GSH) were decreased under IMD treatment; Mel treatment enhanced the AsA/DHA and GSH/GSSG ratios, as well as the activities of MDHAR, DHAR and GR, suggesting that Mel could alleviate oxidative stress of cucumber treated with IMD by regulating the ascorbic acid-glutathione cycle. Importantly, IMD degradation rate and glutathione S-transferase (GST) activity increased after Mel treatment. The levels of transcripts encoding antioxidant enzymes GPX and GST (GST1,2 and 3) were also increased, indicating that Mel accelerated IMD degradation. These results suggest that Mel plays an important role in the detoxification of IMD by promoting GST activity and transcription and the AsA-GSH cycle, thus providing an approach for plants to reduce IMD residue through the plant's own detoxification mechanism.


Assuntos
Cucumis sativus/fisiologia , Glutationa/metabolismo , Inseticidas/toxicidade , Melatonina/metabolismo , Neonicotinoides/toxicidade , Nitrocompostos/toxicidade , Antioxidantes/metabolismo , Ácido Ascórbico/metabolismo , Cucumis sativus/metabolismo , Homeostase/efeitos dos fármacos , Homeostase/fisiologia , Peróxido de Hidrogênio/metabolismo , Inativação Metabólica/efeitos dos fármacos , Oxirredução , Estresse Oxidativo/efeitos dos fármacos , Fotossíntese/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Plântula/efeitos dos fármacos , Estresse Fisiológico/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...