Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 245
Filtrar
1.
Front Oncol ; 14: 1413610, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39011474

RESUMO

Patients with radiation-induced meningioma (RIM), most of whom had received head radiation therapy or had been exposed to ionizing radiation during childhood or adolescence, are at risk of developing cranial meningiomas throughout their lifetimes because of the long latency period. Although intermediate-to-high-dose ionizing radiation exposure is an established risk factor for RIM, risk factors for low-dose RIM remain incompletely defined. This study presents the case of a 56-year-old woman diagnosed with radiation-induced giant meningioma 2.5 years after undergoing an interventional embolization procedure for a brain aneurysm. This is the first report of RIM attributable to a brain intervention with an extremely short latency period. The total radiation dose received by the patient during the operation was 1367.3 mGy, representing a low dose. Our case report strengthens the evidence that even low radiation doses can increase the risk of RIM. These findings provide a realistic basis for the theoretical study of RIM and suggest some new ideas for RIM treatment. The need for caution in the use of radioactive treatments and optimization of interventional procedures is highlighted.

2.
Adv Sci (Weinh) ; : e2402327, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38981014

RESUMO

Dysregulation of the transforming growth factor-ß (TGF-ß) signaling pathway regulates cancer stem cells (CSCs) and drug sensitivity, whereas it remains largely unknown how feedback regulatory mechanisms are hijacked to fuel drug-resistant CSCs. Through a genome-wide CRISPR activation screen utilizing stem-like drug-resistant properties as a readout, the TGF-ß receptor-associated binding protein 1 (TGFBRAP1) is identified as a TGF-ß-inducible positive feedback regulator that governs sensitivity to tyrosine kinase inhibitors (TKIs) and promotes liver cancer stemness. By interacting with and stabilizing the TGF-ß receptor type 1 (TGFBR1), TGFBRAP1 plays an important role in potentiating TGF-ß signaling. Mechanistically, TGFBRAP1 competes with E3 ubiquitin ligases Smurf1/2 for binding to TGFΒR1, leading to impaired receptor poly-ubiquitination and proteasomal degradation. Moreover, hyperactive TGF-ß signaling in turn up-regulates TGFBRAP1 expression in drug-resistant CSC-like cells, thereby constituting a previously uncharacterized feedback mechanism to amplify TGF-ß signaling. As such, TGFBRAP1 expression is correlated with TGFΒR1 levels and TGF-ß signaling activity in hepatocellular carcinoma (HCC) tissues, as well as overall survival and disease recurrence in multiple HCC cohorts. Therapeutically, blocking TGFBRAP1-mediated stabilization of TGFBR1 by selective inhibitors alleviates Regorafenib resistance via reducing CSCs. Collectively, targeting feedback machinery of TGF-ß signaling pathway may be an actionable approach to mitigate drug resistance and liver cancer stemness.

3.
Hepatobiliary Pancreat Dis Int ; 23(5): 472-480, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38724321

RESUMO

BACKGROUND: Regulatory B cells (Bregs) is an indispensable element in inducing immune tolerance after liver transplantation. As one of the microRNAs (miRNAs), miR-29a-3p also inhibits translation by degrading the target mRNA, and yet the relationship between Bregs and miR-29a-3p has not yet been fully explored. This study aimed to investigate the impact of miR-29a-3p on the regulation of differentiation and immunosuppressive functions of memory Bregs (mBregs) and ultimately provide potentially effective therapies in inducing immune tolerance after liver transplantation. METHODS: Flow cytometry was employed to determine the levels of Bregs in peripheral blood mononuclear cells. TaqMan low-density array miRNA assays were used to identify the expression of different miRNAs, electroporation transfection was used to induce miR-29a-3p overexpression and knockdown, and dual luciferase reporter assay was used to verify the target gene of miR-29a-3p. RESULTS: In patients experiencing acute rejection after liver transplantation, the proportions and immunosuppressive function of mBregs in the circulating blood were significantly impaired. miR-29a-3p was found to be a regulator of mBregs differentiation. Inhibition of miR-29a-3p, which targeted nuclear factor of activated T cells 5 (NFAT5), resulted in a conspicuous boost in the differentiation and immunosuppressive function of mBregs. The inhibition of miR-29a-3p in CD19+ B cells was capable of raising the expression levels of NFAT5, thereby promoting B cells to differentiate into mBregs. In addition, the observed enhancement of differentiation and immunosuppressive function of mBregs upon miR-29a-3p inhibition was abolished by the knockdown of NFAT5 in B cells. CONCLUSIONS: miR-29a-3p was found to be a crucial regulator for mBregs differentiation and immunosuppressive function. Silencing miR-29a-3p could be a potentially effective therapeutic strategy for inducing immune tolerance after liver transplantation.


Assuntos
Antígenos CD19 , Linfócitos B Reguladores , Antígeno CD24 , Diferenciação Celular , Transplante de Fígado , MicroRNAs , Humanos , MicroRNAs/metabolismo , MicroRNAs/genética , Linfócitos B Reguladores/imunologia , Linfócitos B Reguladores/metabolismo , Antígenos CD19/metabolismo , Antígenos CD19/genética , Masculino , Antígeno CD24/metabolismo , Antígeno CD24/genética , Transdução de Sinais , Rejeição de Enxerto/imunologia , Rejeição de Enxerto/genética , Feminino , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Pessoa de Meia-Idade , Tolerância Imunológica , Células Cultivadas , Adulto , Fenótipo , Memória Imunológica
4.
Mol Pharm ; 21(7): 3434-3446, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38781419

RESUMO

Chemodynamic therapy (CDT) is a novel antitumor strategy that employs Fenton or Fenton-like reactions to generate highly toxic hydroxyl radical (OH•) from hydrogen peroxide (H2O2) for inducing tumor cell death. However, the antitumor efficacy of the CDT strategy is harshly limited by the redox homeostasis of tumor cells; especially the OH • is easily scavenged by glutathione (GSH) and the intracellular H2O2 level is insufficient in the tumor cells. Herein, we propose the Mn2+-menadione (also known as vitamin K3, MK3) cascade biocatalysis strategy to disrupt the redox homeostasis of tumor cells and induce a OH• storm, resulting in enhanced CDT effect. A nanoliposome encapsulating Mn-MK3 (Mn-MK3@LP) was prepared for the treatment of hepatic tumors in this study. After Mn-MK3@LPs were taken up by tumor cells, menadione could facilitate the production of intracellular H2O2 via redox cycling, and further the cytotoxic OH • burst was induced by Mn2+-mediated Fenton-like reaction. Moreover, high-valent manganese ions were reduced by GSH and the depletion of GSH further disrupted the redox homeostasis of tumor cells, thus achieving synergistically enhanced CDT. Overall, both cellular and animal experiments confirmed that the Mn-MK3@LP cascade biocatalysis nanoliposome exhibited excellent biosafety and tumor suppression efficacy. This study may provide deep insights for developing novel CDT-based strategies for tumor therapy.


Assuntos
Glutationa , Peróxido de Hidrogênio , Radical Hidroxila , Vitamina K 3 , Animais , Radical Hidroxila/química , Radical Hidroxila/metabolismo , Humanos , Camundongos , Glutationa/metabolismo , Glutationa/química , Vitamina K 3/química , Vitamina K 3/farmacologia , Biocatálise , Linhagem Celular Tumoral , Manganês/química , Oxirredução/efeitos dos fármacos , Camundongos Endogâmicos BALB C , Lipossomos/química , Ensaios Antitumorais Modelo de Xenoenxerto , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/metabolismo , Camundongos Nus , Células Hep G2 , Antineoplásicos/farmacologia , Antineoplásicos/química , Nanopartículas/química , Ferro
5.
Small ; : e2401100, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38721947

RESUMO

The increasing need for energy storage devices with high energy density has led to significant interest in Li-metal batteries (LMBs). However, the use of commercial electrolytes in LMBs is problematic due to their flammability, inadequate performance at low temperatures, and tendency to promote the growth of lithium dendrites and other flaws. This study introduces a localized high-concentration electrolyte (LHCE) that addresses these issues by employing non-flammable electrolyte components and incorporating carefully designed additives to enhance flame retardancy and low-temperature performance. By incorporating additives to optimize the electrolyte, it is possible to attain inorganic-dominated solid electrolyte interphases on both the cathode and anode. This achievement results in a uniform deposition of lithium, as well as the suppression of electrolyte decomposition and cathode deterioration. Consequently, this LHCE achieve over 300 stable cycles for both LiNi0.9Mn0.05Co0.05O2||Li cells and LiCoO2||Li cells, as well as 50 cycles for LiNi0.8Mn0.1Co0.1O2 (NCM811||Li) pouch cells. Furthermore, NCM811||Li cells maintain 84% discharge capacity at -20 °C, in comparison to the capacity at room temperature. The utilization of this electrolyte presents novel perspectives for the safe implementation of LMBs.

6.
Plants (Basel) ; 13(9)2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38732391

RESUMO

Tomato leaf disease control in the field of smart agriculture urgently requires attention and reinforcement. This paper proposes a method called LAFANet for image-text retrieval, which integrates image and text information for joint analysis of multimodal data, helping agricultural practitioners to provide more comprehensive and in-depth diagnostic evidence to ensure the quality and yield of tomatoes. First, we focus on six common tomato leaf disease images and text descriptions, creating a Tomato Leaf Disease Image-Text Retrieval Dataset (TLDITRD), introducing image-text retrieval into the field of tomato leaf disease retrieval. Then, utilizing ViT and BERT models, we extract detailed image features and sequences of textual features, incorporating contextual information from image-text pairs. To address errors in image-text retrieval caused by complex backgrounds, we propose Learnable Fusion Attention (LFA) to amplify the fusion of textual and image features, thereby extracting substantial semantic insights from both modalities. To delve further into the semantic connections across various modalities, we propose a False Negative Elimination-Adversarial Negative Selection (FNE-ANS) approach. This method aims to identify adversarial negative instances that specifically target false negatives within the triplet function, thereby imposing constraints on the model. To bolster the model's capacity for generalization and precision, we propose Adversarial Regularization (AR). This approach involves incorporating adversarial perturbations during model training, thereby fortifying its resilience and adaptability to slight variations in input data. Experimental results show that, compared with existing ultramodern models, LAFANet outperformed existing models on TLDITRD dataset, with top1, top5, and top10 reaching 83.3% and 90.0%, and top1, top5, and top10 reaching 80.3%, 93.7%, and 96.3%. LAFANet offers fresh technical backing and algorithmic insights for the retrieval of tomato leaf disease through image-text correlation.

7.
Sci Rep ; 14(1): 9666, 2024 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-38671069

RESUMO

Redox is a unique, programmable modality capable of bridging communication between biology and electronics. Previous studies have shown that the E. coli redox-responsive OxyRS regulon can be re-wired to accept electrochemically generated hydrogen peroxide (H2O2) as an inducer of gene expression. Here we report that the redox-active phenolic plant signaling molecule acetosyringone (AS) can also induce gene expression from the OxyRS regulon. AS must be oxidized, however, as the reduced state present under normal conditions cannot induce gene expression. Thus, AS serves as a "pro-signaling molecule" that can be activated by its oxidation-in our case by application of oxidizing potential to an electrode. We show that the OxyRS regulon is not induced electrochemically if the imposed electrode potential is in the mid-physiological range. Electronically sliding the applied potential to either oxidative or reductive extremes induces this regulon but through different mechanisms: reduction of O2 to form H2O2 or oxidation of AS. Fundamentally, this work reinforces the emerging concept that redox signaling depends more on molecular activities than molecular structure. From an applications perspective, the creation of an electronically programmed "pro-signal" dramatically expands the toolbox for electronic control of biological responses in microbes, including in complex environments, cell-based materials, and biomanufacturing.


Assuntos
Escherichia coli , Oxirredução , Transdução de Sinais , Escherichia coli/genética , Escherichia coli/metabolismo , Peróxido de Hidrogênio , Regulon/genética , Regulação Bacteriana da Expressão Gênica , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Fenóis/química , Fenóis/metabolismo
8.
Microorganisms ; 12(4)2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38674781

RESUMO

In the world's first pig-to-human cardiac cytomegalovirus (PCMV), xenotransplant and elevated levels of porcine key factors contributing to patient mortality were considered. This has renewed attention on PCMV, a virus widely prevalent in pigs. Currently, there are no effective drugs or vaccines targeting PCMV, and its high detection difficulty poses challenges for prevention and control research. In this study, antiviral small hairpin RNA (shRNA) was selected and inserted into the Rosa26 and miR-17-92 loci of pigs via a CRISPR/Cas9-mediated knock-in strategy. Further in vitro viral challenge experiments demonstrated that these genetically edited pig cells could effectively limit PCMV replication. Through this process, we constructed a PCMV-infected cell model, validated partial viral interference sites, enhanced gene knock-in efficiency, performed gene editing at two different gene loci, and ultimately demonstrated that RNA interference (RNAi) technology combined with CRISPR/Cas9 has the potential to generate pig cells with enhanced antiviral infection capabilities. This opens up possibilities for the future production of pig populations with antiviral functionalities.

9.
Cardiovasc Diabetol ; 23(1): 129, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622592

RESUMO

The long-term high-fat diet (HFD) can cause myocardial lipotoxicity, which is characterized pathologically by myocardial hypertrophy, fibrosis, and remodeling and clinically by cardiac dysfunction and heart failure in patients with obesity and diabetes. Circular RNAs (circRNAs), a novel class of noncoding RNA characterized by a ring formation through covalent bonds, play a critical role in various cardiovascular diseases. However, few studies have been conducted to investigate the role and mechanism of circRNA in myocardial lipotoxicity. Here, we found that circ_005077, formed by exon 2-4 of Crmp1, was significantly upregulated in the myocardium of an HFD-fed rat. Furthermore, we identified circ_005077 as a novel ferroptosis-related regulator that plays a role in palmitic acid (PA) and HFD-induced myocardial lipotoxicity in vitro and in vivo. Mechanically, circ_005077 interacted with Cyclophilin A (CyPA) and inhibited its degradation via the ubiquitination proteasome system (UBS), thus promoting the interaction between CyPA and p47phox to enhance the activity of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase responsible for ROS generation, subsequently inducing ferroptosis. Therefore, our results provide new insights into the mechanisms of myocardial lipotoxicity, potentially leading to the identification of a novel therapeutic target for the treatment of myocardial lipotoxicity in the future.


Assuntos
Ciclofilina A , Dieta Hiperlipídica , Ferroptose , Animais , Ratos , Ciclofilina A/metabolismo , Miocárdio/metabolismo , Obesidade/metabolismo
10.
Indian J Ophthalmol ; 72(Suppl 3): S482-S487, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38648456

RESUMO

PURPOSE: To report the indications, surgical techniques, and outcomes of repeat keratoplasty and evaluate the risk factors for graft failure in the Chinese population. METHODS: The medical records of 216 patients (243 cases) who underwent at least two keratoplasties at a leading eye hospital in southern China between 2011 and 2020 were retrospectively reviewed. Indications and surgical procedures for repeat corneal transplantation were analyzed. Kaplan-Meier survival analysis was used to determine the graft survival rate after repeat keratoplasty. A multivariable survival model was used to assess the risk factors. RESULTS: Repeated keratoplasties increased continuously from 2011 to 2020 (P = 0.002). The most common primary indication was infectious keratitis (38.7%), and the most common reason for repeat keratoplasty was graft rejection (30.04%). Regraft techniques included penetrating keratoplasty (PK) in 165 cases (67.9%), deep lamellar keratoplasty (DALK) in 52 cases (21.40%), and endothelial keratoplasty (EK) in 26 cases (10.7%). Median survival was 5.3, 6.8, and 6.4 years for PK, DALK, and EK, respectively. The 5-year survival rate was 53.5%, 66.6%, and 69.8% for PK, DALK, and EK, respectively. The median LogMAR visual acuity was 1.4 for PK, 0.75 for DALK, and 1.2 for EK at the end of the follow-up. Multivariate analysis revealed that graft rejection is a risk factor for repeat keratoplasty failure (P = 0.002). CONCLUSIONS: DALK and EK may provide better outcomes than PK in treating graft failure. Preventing and treating postoperative graft rejection may be key to improving regraft survival. These findings will aid in the management of failed corneal grafts.


Assuntos
Doenças da Córnea , Rejeição de Enxerto , Sobrevivência de Enxerto , Reoperação , Acuidade Visual , Humanos , Masculino , Estudos Retrospectivos , Feminino , Fatores de Risco , Reoperação/estatística & dados numéricos , Pessoa de Meia-Idade , China/epidemiologia , Doenças da Córnea/cirurgia , Adulto , Rejeição de Enxerto/epidemiologia , Idoso , Seguimentos , Transplante de Córnea/métodos , Adulto Jovem , Adolescente , Falha de Tratamento , Incidência , Idoso de 80 Anos ou mais , Complicações Pós-Operatórias/epidemiologia , Ceratoplastia Penetrante/métodos , Criança
11.
Med Phys ; 51(6): 4524-4535, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38299670

RESUMO

BACKGROUND: In boron neutron capture therapy (BNCT)-a form of binary radiotherapy-the primary challenge in treatment planning systems for dose calculations arises from the time-consuming nature of the Monte Carlo (MC) method. Recent progress, including the use of neural networks (NN), has been made to accelerate BNCT dose calculations. However, this approach may result in significant dose errors in both the tumor and the skin, with the latter being a critical organ in BNCT. Furthermore, owing to the lack of physical processes in purely NN-based approaches, their reliability for clinical dose calculations in BNCT is questionable. PURPOSE: In this study, a physically constrained MC-NN (PCMC-NN) coupling algorithm is proposed to achieve fast and accurate computation of the BNCT three-dimensional (3D) therapeutic dose distribution. This approach synergizes the high precision of the MC method with the speed of the NN and utilizes physical conservation laws to constrain the coupling process. It addresses the time-consuming issue of the traditional MC method while reducing dose errors. METHODS: Clinical data were collected from 113 glioblastoma patients. For each patient, the 3D dose distributions for both the coarse and detailed dose grids were calculated using the MC code PHITS. Among these patients, the data from 14 patients were allocated to the test set, 9 to the validation set, and the remaining to the training set. A neural network, 3D-Unet, was built based on the coarse grid dose and patient CT information to enable fast and accurate computation of the 3D detailed grid dose distribution of BNCT. RESULTS: Statistical evaluations, including relative deviation, dose deviation, mean absolute error (MAE), and mean absolute percentage error (MAPE) were conducted. Our findings suggested that the PCMC-NN algorithm substantially outperformed the traditional NN and interpolation methods. Furthermore, the proposed algorithm significantly reduced errors, particularly in the skin and GTV, and improved computational accuracy (hereinafter referred to simply as 'accuracy') with a MAPE range of 1.6%-4.0% and a maximum MAE of 0.3 Gy (IsoE) for different organs. The dose-volume histograms generated by the PCMC-NN aligned well with those obtained from the MC method, further validating its accuracy. CONCLUSIONS: The PCMC-NN algorithm enhanced the speed and accuracy of BNCT dose calculations by combining the MC method with the NN algorithm. This indicates the significant potential of the proposed algorithm for clinical applications in optimizing treatment planning.


Assuntos
Algoritmos , Terapia por Captura de Nêutron de Boro , Método de Monte Carlo , Redes Neurais de Computação , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador , Terapia por Captura de Nêutron de Boro/métodos , Humanos , Planejamento da Radioterapia Assistida por Computador/métodos , Doses de Radiação
12.
Nat Commun ; 15(1): 1761, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38409161

RESUMO

Tissue damage elicits cell fate switching through a process called metaplasia, but how the starting cell fate is silenced and the new cell fate is activated has not been investigated in animals. In cell culture, pioneer transcription factors mediate "reprogramming" by opening new chromatin sites for expression that can attract transcription factors from the starting cell's enhancers. Here we report that SOX4 is sufficient to initiate hepatobiliary metaplasia in the adult mouse liver, closely mimicking metaplasia initiated by toxic damage to the liver. In lineage-traced cells, we assessed the timing of SOX4-mediated opening of enhancer chromatin versus enhancer decommissioning. Initially, SOX4 directly binds to and closes hepatocyte regulatory sequences via an overlapping motif with HNF4A, a hepatocyte master regulatory transcription factor. Subsequently, SOX4 exerts pioneer factor activity to open biliary regulatory sequences. The results delineate a hierarchy by which gene networks become reprogrammed under physiological conditions, providing deeper insight into the basis for cell fate transitions in animals.


Assuntos
Reprogramação Celular , Cromatina , Animais , Camundongos , Diferenciação Celular/genética , Reprogramação Celular/genética , Metaplasia , Fatores de Transcrição/metabolismo
13.
Clin Transl Med ; 14(2): e1598, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38390756

RESUMO

Despite the remarkable clinical efficacy of cancer immunotherapy, considerable patients fail to benefit from it due to primary or acquired resistance. Tumours frequently hijack diverse epigenetic mechanisms to evade immune detection, thereby highlighting the potential for pharmacologically targeting epigenetic regulators to restore the impaired immunosurveillance and re-sensitise tumours to immunotherapy. Herein, we demonstrated that KDM4-targeting chemotherapeutic drug JIB-04, epigenetically triggered the tumour-intrinsic innate immune responses and immunogenic cell death (ICD), resulting in impressive antitumour effects. Specifically, JIB-04 induced H3K9 hypermethylation through specific inhibition of the KDM4 family (KDM4A-D), leading to impaired DNA repair signalling and subsequent DNA damage. As a result, JIB-04 not only activated the tumour-intrinsic cyclic GMP-AMP synthase (cGAS)-STING pathway via DNA-damage-induced cytosolic DNA accumulation, but also promoted ICD, releasing numerous damage-associated molecular patterns. Furthermore, JIB-04 induced adaptive resistance through the upregulation of programmed death-ligand 1 (PD-L1), which could be overcome with additional PD-L1 blockade. In human tumours, KDM4B expression was negatively correlated with clinical outcomes, type I interferon signatures, and responses to immunotherapy. In conclusion, our results demonstrate that targeting KDM4 family can activate tumour-intrinsic innate sensing and immunogenicity, and synergise with immunotherapy to improve antitumour outcomes.


Assuntos
Aminopiridinas , Antígeno B7-H1 , Hidrazonas , Neoplasias , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/genética , Imunidade Inata/genética , DNA/metabolismo , Histona Desmetilases com o Domínio Jumonji/genética
14.
Nat Commun ; 15(1): 1532, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38378697

RESUMO

Acquired resistance to immunotherapy remains a critical yet incompletely understood biological mechanism. Here, using a mouse model of pancreatic ductal adenocarcinoma (PDAC) to study tumor relapse following immunotherapy-induced responses, we find that resistance is reproducibly associated with an epithelial-to-mesenchymal transition (EMT), with EMT-transcription factors ZEB1 and SNAIL functioning as master genetic and epigenetic regulators of this effect. Acquired resistance in this model is not due to immunosuppression in the tumor immune microenvironment, disruptions in the antigen presentation machinery, or altered expression of immune checkpoints. Rather, resistance is due to a tumor cell-intrinsic defect in T-cell killing. Molecularly, EMT leads to the epigenetic and transcriptional silencing of interferon regulatory factor 6 (Irf6), rendering tumor cells less sensitive to the pro-apoptotic effects of TNF-α. These findings indicate that acquired resistance to immunotherapy may be mediated by programs distinct from those governing primary resistance, including plasticity programs that render tumor cells impervious to T-cell killing.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Linhagem Celular Tumoral , Recidiva Local de Neoplasia , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/terapia , Carcinoma Ductal Pancreático/metabolismo , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/terapia , Neoplasias Pancreáticas/metabolismo , Imunoterapia , Transição Epitelial-Mesenquimal/genética , Microambiente Tumoral
15.
Sci Rep ; 14(1): 4792, 2024 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-38413691

RESUMO

Rescues from building collapse accidents present a significant challenge for China's emergency rescue system. However, there are also many risk factors in a training scenario, which have been summarized in this study. A hierarchical indicator system for personnel safety was established, including 12 first-level indicators and 23s-level indicators. Then, an improved Grey-DEMATEL-ISM-MICMAC evaluation model was constructed to evaluate the level of risk. Influencing factor scores were determined according to the responses from the questionnaire survey. The influencing degree, influenced degree, centrality, and causality were identified, and the importance, relevance, and clustering of the various factors were obtained after making quantitative calculations. The results showed that the order of priority for solving the essential issues was safety education (A2), operating standards and proficiency (A10), equipment inspection (A4), equipment warehousing maintenance and records (A21). The solving of safety education was identified to be the most essential priority. The priority control order of direct causes was Scientific design and construction (A5), Potential fixed hazards in the facility (A12), Physical fitness of personnel (A1), Weather influences (A18), and Initiation efficiency of emergency plans (A20), and direct control measures for these five factors could achieve a relatively significant effect.


Assuntos
Colapso Estrutural , Acidentes , Fatores de Risco , Inquéritos e Questionários
16.
J Biosci Bioeng ; 137(5): 360-371, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38369397

RESUMO

The unique cellar fermentation process of Chinese strong-flavor Baijiu is the reason for its characteristic cellar aroma flavor. The types, abundance, community structure and metabolic activity of microorganisms in the pit mud directly affect the microbial balance in the white spirit production environment, promoting the formation of typical aromas and influencing the quality of CFSB. During the production process, the production of off-flavor in the cellar may occur. The aim of this study is to elucidate the differences in microbiota and flavor between normal pit mud and abnormal pit mud (pit mud with off-flavor). A total of 46 major volatile compounds were identified, and 24 bacterial genera and 21 fungal genera were screened. The esters, acids, and alcohols in the abnormal pit mud were lower than those in the normal pit mud, while the aldehydes were higher. 3-Methyl indole, which has been proven to be responsible for the muddy and musty flavors, was detected in both types of pit mud, and for the first time, high levels of 4-methylanisole was detected in the pit mud. The microbial composition of the two types of pit mud showed significant differences in the bacterial genera of Sporosarcina, Lactobacillus, Garciella, Anaerosalibacter, Lentimicrobium, HN-HF0106, Petrimonas, Clostridium_sensu_stricto_12 and Bacillus, and the fungal genera of Millerozyma, Penicillium, Mortierella, Monascus, Saccharomyces, Issatchenkia, Pithoascus, Pseudallescheria, and Wickerhamomyces. Additionally, we speculate that Sporosarcina is the predominant bacterial genus responsible for the imbalance of microbiota in pit mud.


Assuntos
Microbiota , Odorantes , Odorantes/análise , Bebidas Alcoólicas/análise , Bactérias/metabolismo , Fermentação
17.
ACS Appl Mater Interfaces ; 16(7): 8717-8732, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38326933

RESUMO

Urea electrolysis is a promising energy-efficient hydrogen production process with environmental benefits, but the lack of efficient and sustainable ampere-level current density electrocatalysts fabricated through simple methods is a major challenge for commercialization. Herein, we present an efficient and stable heterostructure electrocatalyst for full urea and water electrolysis in a convenient and time-efficient preparation manner. Overall, superhydrophilic/superaerophobic CoMn/CuNiP/NF exhibits exceptional performance for the hydrogen evolution reaction (HER) (-33.8, -184.4, and -234.8 mV at -10, -500, and -1000 mA cm-2, respectively), urea electro-oxidation reaction (UOR) [1.28, 1.43, and 1.51 V (vs RHE) at 10, 500, and 1000 mA cm-2, respectively], and oxygen evolution reaction (OER) [1.45, 1.67, and 1.74 V (vs RHE) at 10, 500, and 1000 mA cm-2, respectively]. Moreover, the superaerophobic CoMn/CuNiP/NF demonstrates promising potential in full urea (1.33, 1.57, and 1.60 V at 10, 500, and 1000 mA cm-2, respectively) and water (1.46 V, 1.78, and 1.86 at 10, 500, and 1000 mA cm-2, respectively) electrolysis. Based on X-ray photoelectron spectroscopy results, it was determined that the surface of the CoMn/CuNiP electrode was rich in redox pairs such as Ni2+/Ni3+, Cu+/Cu2+, Co2+/Co3+, and Mn2+/Mn3+, which are crucial for the formation of active sites for the OER and UOR, such as NiOOH, MnOOH, and CoOOH, thereby enhancing the catalytic activity. Besides, the in situ assembled CoMn/CuNiP/NF displayed highly stable performance for HER, OER, and UOR with high Faradaic efficiency for over 500 h. This research offers a simple and efficient method for manufacturing a high-efficiency and stable trifunctional electrocatalyst capable of delivering ampere-level current density in urea-assisted hydrogen production. Our density functional theory calculations reveal the potential of CoMn/CuNiP as an effective catalyst, enhancing the electronic properties and catalytic performance. The near-zero Gibbs free-energy change for HER underscores its promise, while reduced CO2 desorption energies and charge redistribution support efficient UOR. These findings signify CoMn/CuNiP's potential for electrochemical applications.

18.
Insects ; 15(2)2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38392551

RESUMO

Wolbachia bacteria (phylum Proteobacteria) are ubiquitous intracellular parasites of diverse invertebrates. In insects, coevolution has forged mutualistic associations with Wolbachia species, influencing reproduction, immunity, development, pathogen resistance, and overall fitness. However, the impact of Wolbachia on other microbial associates within the insect microbiome, which are crucial for host fitness, remains less explored. The diamondback moth (Plutella xylostella), a major pest of cruciferous vegetables worldwide, harbors the dominant Wolbachia strain plutWB1, known to distort its sex ratio. This study investigated the bacterial community diversity and dynamics across different developmental life stages and Wolbachia infection states in P. xylostella using high-throughput 16S rDNA amplicon sequencing. Proteobacteria and Firmicutes dominated the P. xylostella microbiome regardless of life stage or Wolbachia infection. However, the relative abundance of dominant genera, including an unclassified genus of Enterobacteriaceae, Wolbachia, Carnobacterium, and Delftia tsuruhatensis, displayed significant stage-specific variations. While significant differences in bacterial diversity and composition were observed across life stages, Wolbachia infection had no substantial impact on overall diversity. Nonetheless, relative abundances of specific genera differed between infection states. Notably, Wolbachia exhibited a stable, high relative abundance across all stages and negatively correlated with an unclassified genus of Enterobacteriaceae, Delftia tsuruhatensis, and Carnobacterium. Our findings provide a foundational understanding of the complex interplay between the host, Wolbachia, and the associated microbiome in P. xylostella, paving the way for a deeper understanding of their complex interactions and potential implications for pest control strategies.

19.
Small ; : e2400087, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38377283

RESUMO

Increasing the charging cutoff voltage of LiCoO2 to 4.6 V is significant for enhancing battery density. However, the practical application of Li‖LiCoO2 batteries with a 4.6 V cutoff voltage faces significant impediments due to the detrimental changes under high voltage. This study presents a novel bifunctional electrolyte additive, 2-(trifluoromethyl)benzamide (2-TFMBA), which is employed to establish a stable and dense cathode-electrolyte interface (CEI). Characterization results reveal that an optimized CEI is achieved through the synergistic effects of the amide groups and trifluoromethyl groups within 2-TFMBA. The resulting CEI not only enhances the structural stability of LiCoO2 but also serves as a high-speed lithium-ion conduction channel, which expedites the insertion and extraction of lithium ions. The Li‖LiCoO2 batteries with 0.5 wt% 2-TFMBA achieves an 84.7% capacity retention rate after enduring 300 cycles at a current rate of 1 C, under a cut-off voltage of 4.6 V. This study provides valuable strategic insights into the stabilization of cathode materials in high-voltage batteries.

20.
Phys Chem Chem Phys ; 26(5): 4159-4165, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38230417

RESUMO

Topological quasiparticles have garnered significant research attention in condensed matter physics. However, they are exceedingly rare in two-dimensional systems, particularly those hosting unconventional topological quasiparticles. In this work, employing first-principles calculations and symmetry analysis, we demonstrate that PtS, PtSe, and PtTe monolayers serve as high-quality two-dimensional topological semimetal materials. These materials exhibit multiple types of topological quasiparticles around the Fermi level in the absence of spin-orbit coupling, such as conventional linear Weyl points and unconventional quadratic Weyl points in the PtS monolayer, as well as nodal loops in PtSe and PtTe monolayers. When spin-orbit coupling (SOC) is introduced, a tiny gap opens, transforming the systems into quantum spin hall insulators. Simultaneously, three spin-orbit Dirac points, robust against SOC, appear at the X, Y, and M points. We illustrate the symmetry protection, low-energy effective model, and edge states of these topological states. Our work provides an excellent material platform for studying novel two-dimensional topological quasiparticles and topological insulators.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...