Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Cell Mol Med ; 26(15): 4305-4321, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35794816

RESUMO

Lung cancer is the leading cause of cancer-associated death, with a global 5-year survival rate <20%. Early metastasis and recurrence remain major challenges for lung cancer treatment. The stemness property of cancer cells has been suggested to play a key role in cancer plasticity, metastasis and drug-resistance, and is a potential target for drug development. In this study, we found that in non-small cell lung cancer (NSCLC), BMI1 and MCL1 play crucial roles of cancer stemness including invasion, chemo-resistance and tumour initiation. JNK signalling serves as a link between oncogenic pathway or genotoxicity to cancer stemness. The activation of JNK, either by mutant EGFR or chemotherapy agent, stabilized BMI1 and MCL1 proteins through suppressing the expression of E3-ubiquitin ligase HUWE1. In lung cancer patient samples, high level of BMI1 is correlated with poor survival, and the expression of BMI1 is positively correlated with MCL1. A novel small-molecule, BI-44, was developed, which effectively suppressed BMI1/MCL1 expressions and inhibited tumour formation and progression in preclinical models. Targeting cancer stemness mediated by BMI1/MCL1 with BI-44 provides the basis for a new therapeutic approach in NSCLC treatment.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Linhagem Celular Tumoral , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Proteína de Sequência 1 de Leucemia de Células Mieloides/genética , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Células-Tronco Neoplásicas/metabolismo , Complexo Repressor Polycomb 1/genética , Complexo Repressor Polycomb 1/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
2.
Oncotarget ; 8(44): 76057-76068, 2017 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-29100291

RESUMO

Hinokitiol (ß-thujaplicin) is a tropolone-related compound that has anti-microbe, anti-inflammation, and anti-tumor effects. Cancer stem/progenitor cells (CSCs) are a subpopulation of cancer cells with tumor initiation, chemoresistant, and metastatic properties and have been considered the important therapeutic target in future cancer therapy. Previous studies reported that hinokitiol exhibits an anti-cancer activity against murine tumor cells through the induction of autophagy. The current research revealed that hinokitiol suppressed the self-renewal capabilities of human breast CSCs (BCSCs) and inhibited the expression of BMI1 at protein level without suppressing its mRNA. Treatment of hinokitiol in mammospheres induced the expression of miR-494-3p and inhibition of miR-494-3p expression in BCSCs. This treatment abolished the suppressive effects of hinokitiol in mammosphere formation and BMI1 expression. BMI1 is a target of miR-494-3p by luciferase-based 3'UTR reporter assay. Overexpression of miR-494-3p in BCSCs caused the down-regulation of BMI1 protein, inhibition of mammosphere forming capability, and suppression of their tumorigenicity. Moreover, miR-494-3p expression was significantly and inversely correlated with patient survival in two independent public database sets. Furthermore, treatment of hinokitiol in vivo suppressed the growth of xenograft human breast tumors as well as the expression of BMI1 and ALDH1A1 in xenograft tumors. In conclusion, these data suggest that hinokitiol targets BCSCs through the miR-494-3p-mediated down-modulation of BMI1 expression.

3.
J Cell Mol Med ; 18(4): 698-708, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24400868

RESUMO

Oral submucous fibrosis (OSF) is considered as a pre-cancerous condition of the oral mucosa and is highly associated with habitual areca quid chewing. Arecoline is the major alkaloid in areca quid and is thought to be involved in the pathogenesis of OSF. Our previous studies have demonstrated that arecoline could induce epithelial-mesenchymal transition (EMT)-related factors in primary human buccal mucosal fibroblasts (BMFs). Therefore, we investigated the expression of zinc finger E-box binding homeobox 1 (ZEB1), which is a well-known transcriptional factor in EMT, in OSF tissues and its role in arecoline-induced myofibroblast transdifferentiation from BMFs. The expression of ZEB1, as well as the myofibroblast marker α-smooth muscle actin (α-SMA), was significantly increased in OSF tissues, respectively. With immunofluorescence analysis, arecoline induced the formation of α-SMA-positive stress fibres in BMFs expressing nuclear ZEB1. Arecoline also induced collagen contraction of BMFs in vitro. By chromatin immunoprecipitation, the binding of ZEB1 to the α-SMA promoter in BMFs was increased by arecoline. The promoter activity of α-SMA in BMFs was also induced by arecoline, while knockdown of ZEB1 abolished arecoline-induced α-SMA promoter activity and collagen contraction of BMFs. Long-term exposure of BMFs to arecoline induced the expression of fibrogenic genes and ZEB1. Silencing of ZEB1 in fibrotic BMFs from an OSF patient also suppressed the expression of α-SMA and myofibroblast activity. Inhibition of insulin-like growth factor receptor-1 could suppress arecoline-induced ZEB1 activation in BMFs. Our data suggest that ZEB1 may participate in the pathogenesis of areca quid-associated OSF by activating the α-SMA promoter and inducing myofibroblast transdifferentiation from BMFs.


Assuntos
Arecolina/administração & dosagem , Transdiferenciação Celular/efeitos dos fármacos , Proteínas de Homeodomínio/biossíntese , Fibrose Oral Submucosa/patologia , Fatores de Transcrição/biossíntese , Actinas/biossíntese , Actinas/genética , Areca/química , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Transição Epitelial-Mesenquimal/genética , Fibroblastos/efeitos dos fármacos , Proteínas de Homeodomínio/genética , Humanos , Mastigação , Mucosa Bucal/efeitos dos fármacos , Mucosa Bucal/patologia , Miofibroblastos/efeitos dos fármacos , Fibrose Oral Submucosa/induzido quimicamente , Fibrose Oral Submucosa/metabolismo , Cultura Primária de Células , Regiões Promotoras Genéticas , Fatores de Transcrição/genética , Homeobox 1 de Ligação a E-box em Dedo de Zinco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...