Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.046
Filtrar
1.
Int J Biol Macromol ; : 133622, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38969034

RESUMO

Myocardial infarction (MI) is a serious cardiovascular disease with complex complications and high lethality. Currently, exosome (Exo) therapy has emerged as a promising treatment of ischemic MI due to its antioxidant, anti-inflammatory, and vascular abilities. However, traditional Exo delivery lacks spatiotemporal precision and targeting of microenvironment modulation, making it difficult to localize the lesion site for sustained effects. In this study, an injectable oxidized hyaluronic acid-polylysine (OHA-PL) hydrogel was developed to conveniently load adipose-derived mesenchymal stem cell exosomes (ADSC-Exos) and improve their retention under physiological conditions. The OHA-PL@Exo hydrogel with high spatiotemporal precision is transplanted minimally invasively into the ischemic myocardium to scavenge intracellular and extracellular reactive oxygen species, regulate macrophage polarization, and attenuate inflammation in the early phase of MI. In addition, this synergistic microenvironment modulation can effectively reduce myocardial fibrosis and ventricular remodeling, promote angiogenesis, and restore electrophysiological function in the late stage of MI. Therefore, this hyaluronic acid-polylysine to deliver exosomes has become a promising therapeutic strategy for myocardial repair.

2.
Sci Rep ; 14(1): 16031, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38992201

RESUMO

O6-methylguanine-DNA methyltransferase (MGMT) has been demonstrated to be an important prognostic and predictive marker in glioblastoma (GBM). To establish a reliable radiomics model based on MRI data to predict the MGMT promoter methylation status of GBM. A total of 183 patients with glioblastoma were included in this retrospective study. The visually accessible Rembrandt images (VASARI) features were extracted for each patient, and a total of 14676 multi-region features were extracted from enhanced, necrotic, "non-enhanced, and edematous" areas on their multiparametric MRI. Twelve individual radiomics models were constructed based on the radiomics features from different subregions and different sequences. Four single-sequence models, three single-region models and the combined radiomics model combining all individual models were constructed. Finally, the predictive performance of adding clinical factors and VASARI characteristics was evaluated. The ComRad model combining all individual radiomics models exhibited the best performance in test set 1 and test set 2, with the area under the receiver operating characteristic curve (AUC) of 0.839 (0.709-0.963) and 0.739 (0.581-0.897), respectively. The results indicated that the radiomics model combining multi-region and multi-parametric MRI features has exhibited promising performance in predicting MGMT methylation status in GBM. The Modeling scheme that combining all individual radiomics models showed best performance among all constructed moels.


Assuntos
Neoplasias Encefálicas , Metilação de DNA , Metilases de Modificação do DNA , Enzimas Reparadoras do DNA , Glioblastoma , Imageamento por Ressonância Magnética , Regiões Promotoras Genéticas , Proteínas Supressoras de Tumor , Humanos , Glioblastoma/genética , Glioblastoma/diagnóstico por imagem , Glioblastoma/patologia , Enzimas Reparadoras do DNA/genética , Metilases de Modificação do DNA/genética , Proteínas Supressoras de Tumor/genética , Imageamento por Ressonância Magnética/métodos , Feminino , Masculino , Pessoa de Meia-Idade , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/patologia , Estudos Retrospectivos , Adulto , Idoso , Prognóstico , Curva ROC , Radiômica
3.
Molecules ; 29(13)2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38999103

RESUMO

Carbon dioxide (CO2) is a non-toxic, abundant and recoverable source of carbon monoxide. Despite its thermodynamically stable and kinetically inert nature, research on CO2 utilisation is ongoing. CO2-based aryne reactions, crucial for synthesising ortho-substituted benzoic acids and their cyclisation products, have garnered significant attention, and multi-component reactions (MCRs) involving CO2, aryne and nucleophilic reagents have been extensively studied. This review highlights recent advancements in CO2 capture reactions utilising phenylalkyne reactive intermediates. Mechanistic insights into these reactions are provided together with prospects for further development in this field.

4.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 55(3): 762-768, 2024 May 20.
Artigo em Chinês | MEDLINE | ID: mdl-38948302

RESUMO

Objective: Ultrasound diagnosis and treatment is easy to perform and takes little time. It is widely used in clinical practice thanks to its non-invasive, real-time, and dynamic characteristics. In the process of ultrasound diagnosis and treatment, the probe may come into contact with the skin, the mucous membranes, and even the sterile parts of the body. However, it is difficult to achieve effective real-time disinfection of the probes after use and the probes are often reused, leading to the possibility of the probes carrying multiple pathogenic bacteria. At present, the processing methods for probes at home and abroad mainly include probe cleaning, probe disinfection, and physical isolation (using probe covers or sheaths). Yet, each approach has its limitations and cannot completely prevent probe contamination and infections caused by ultrasound diagnosis and treatment. For example, when condoms are used as the probe sheath, the rate of condom breakage is relatively high. The cutting and fixing of cling film or freezer bags involves complicated procedures and is difficult to perform. Disposable plastic gloves are prone to falling off and causing contamination and are hence not in compliance with the principles of sterility. Furthermore, the imaging effect of disposable plastic gloves is poor. Therefore, there is an urgent need to explore new materials to make probe covers that can not only wrap tightly around the ultrasound probe, but also help achieve effective protection and rapid reuse. Based on the concept of physical barriers, we developed in this study a heat sealing system for the rapid reuse of ultrasound probes. The system uses a heat sealing device to shrink the protective film so that it wraps tightly against the surface of the ultrasound probe, allowing for the rapid reuse of the probe while reducing the risk of nosocomial infections. The purpose of this study is to design a heat sealing system for the rapid reuse of ultrasound probes and to verify its application effect on the rapid reuse of ultrasound probes. Methods: 1) The heat sealing system for the rapid reuse of ultrasound probes was designed and tested by integrating medical and engineering methods. The system included a protective film (a multilayer co-extruded polyolefin thermal shrinkable film) and a heat sealing device, which included heating wire components, a blower, a photoelectric switch, temperature sensors, a control and drive circuit board, etc. According to the principle of thermal shrinkage, the ultrasound probe equipped with thermal shrinkable film was rapidly heated and the film would wrap closely around the ultrasound probe placed on the top of the heat sealing machine. The ultrasound probe was ready for use after the thermal shrinkage process finished. Temperature sensors were installed on the surface of the probe to test the thermal insulation performance of the system. The operation procedures of the system are as follows: placing the ultrasound probe covered with the protective film in a certain space above the protective air vent, which is detected by the photoelectric switch; the heating device heats the thermal shrinkable film with a constant flow of hot air at a set temperature value. Then, the probe is rotated so that the thermal shrinkable film will quickly wrap around the ultrasound probe. After the heat shrinking is completed, the probe can be used directly. 2) Using the convenience sampling method, 90 patients from the Department of Anesthesiology and Perioperative Medicine, the First Affiliated Hospital of Xi'an Jiaotong University were included as the research subjects. All patients were going to undergo arterial puncture under ultrasound guidance. The subjects were divided into 3 groups, with 30 patients in each group. Three measures commonly applied in clinical practice were used to process the probes in the three groups and water-soluble fluorescent labeling was applied around the puncture site before use. In the experimental group, the probes were processed with the heat sealing system. The standard operating procedures of the heat sealing system for rapid reuse of ultrasonic probes were performed to cover the ultrasonic probe and form a physical barrier to prevent probe contamination. There were two control groups. In control group 1, disinfection wipes containing double-chain quaternary ammonium salt were used to repeatedly wipe the surface of the probe for 10-15 times, and then the probe was ready for use once it dried up. In the control group 2, a disposable protective sheath was used to cover the front end of the probe and the handle end of the sheath was tied up with threads. Comparison of the water-soluble fluorescent labeling on the surface of the probe (which reflected the colony residues on the surface of the probe) before and after use and the reuse time (i.e., the lapse of time from the end of the first use to the beginning of the second use) were made between the experimental group and the two control groups. Results: 1) The temperature inside the ultrasound probe was below 40 ℃ and the heat sealing system for rapid reuse did not affect the performance of the ultrasound probe. 2) The reuse time in the heat sealing system group, as represented by (median [P25, P75]), was (8.00 [7.00, 10.00]) s, which was significantly lower than those of the disinfection wipe group at (95.50 [8.00, 214.00]) s and the protective sleeve group at (25.00 [8.00, 51.00]) s, with the differences being statistically significant (P<0.05). No fluorescence residue was found on the probe in either the heat sealing system group or the protective sheath group after use. The fluorescence residue in the heat sealing system group was significantly lower than that in the disinfection wipes group, showing statistically significant differences (χ 2=45.882, P<0.05). Conclusion: The thermal shrinkable film designed and developed in this study can be cut and trimmed according to the size of the equipment. When the film is heated, it shrinks and wraps tightly around the equipment, forming a sturdy protective layer. With the heat sealing system for rapid reuse of ultrasonic probes, we have realized the semi-automatic connection between the thermal shrinkable film and the heating device, reducing the amount of time-consuming and complicated manual operation. Furthermore, the average reuse time is shortened and the system is easy to use, which contributes to improvements in the reuse and operation efficiency of ultrasound probes. The heat sealing system reduces colony residues on the surface of the probe and forms an effective physical barrier on the probe. No probes were damaged in the study. The heat sealing system for rapid reuse of ultrasonic probes can be used as a new method to process the ultrasonic probes.


Assuntos
Ultrassonografia , Ultrassonografia/instrumentação , Ultrassonografia/métodos , Temperatura Alta , Reutilização de Equipamento , Humanos , Desinfecção/métodos , Desinfecção/instrumentação , Desenho de Equipamento , Contaminação de Equipamentos/prevenção & controle
5.
Front Pharmacol ; 15: 1387756, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38948468

RESUMO

Introduction: Tetrandrine (Tet) is the main pharmacological component of Stephania tetrandra S. Moore, which is a well-documented traditional Chinese medicine known for its diuretic and antihypertensive properties. Unraveling the specific targets and mechanisms of Tet involved in inducing diuresis and mitigating hypertension can provide valuable insights into its therapeutic effects. This study aimed to explore the diuretic and antihypertensive targets and mechanisms of Tet using chemical biology coupled with activity analyses in vivo and in vitro. Methods: The diuretic effects of Tet were evaluated using a water-loaded mouse model. The direct target proteins for the diuretic and antihypertensive effects of Tet were determined using chemical biology. Furthermore, the molecular mechanism of Tet binding to target proteins was analyzed using a multidisciplinary approach based on the structure and function of the proteins. Finally, the effects of the Tet-targeted protein on downstream signaling pathways and blood pressure were evaluated in hypertensive model rats. Results: Tet exhibited significant antihypertensive and potassium-preserving diuretic effects. The mechanism underlying these effects involves the modulation of the enzyme activity by covalent binding of Tet to Cys423 of CYP11A1. This interaction alters the stability of heme within CYP11A1, subsequently impeding electron transfer and inhibiting aldosterone biosynthesis. Discussion: This study not only revealed the mechanism of the diuretic and antihypertensive effects of Tet but also discovered a novel covalent inhibitor of CYP11A1. These findings contribute significantly to our understanding of the therapeutic potential of Tet and provide a foundation for future research in the development of targeted treatments for hypertension.

6.
Neuroscience ; 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38960088

RESUMO

Hippocampus is a critical component of the central nervous system. SRSF10 is expressed in central nervous system and plays important roles in maintaining normal brain functions. However, its role in hippocampus development is unknown. In this study, using SRSF10 conditional knock-out mice in neural progenitor cells (NPCs), we found that dysfunction of SRSF10 leads to developmental defects in the dentate gyrus of hippocampus, which manifests as the reduced length and wider suprapyramidal blade and infrapyramidal blade.Furthermore, we proved that loss of SRSF10 in NPCs caused inhibition of the differentiation activity and the abnormal migration of NPCs and granule cells, resulting in reduced granule cells and more ectopic granule cells dispersed in the molecular layer and hilus. Finally, we found that the abnormal migration may be caused by the radial glia scaffold and the reduced DISC1 expression in NPCs. Together, our results indicate that SRSF10 is required for the cell migration and formation of dentate gyrus during the development of hippocampus.

7.
J Phys Chem A ; 128(27): 5386-5397, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38951489

RESUMO

We provide an approach to sample rare events during classical ab initio molecular dynamics and quantum wavepacket dynamics. For classical AIMD, a set of fictitious degrees of freedom are introduced that may harmonically interact with the electronic and nuclear degrees of freedom to steer the dynamics in a conservative fashion toward energetically forbidden regions. A similar approach when introduced for quantum wavepacket dynamics has the effect of biasing the trajectory of the wavepacket centroid toward the regions of the potential surface that are difficult to sample. The approach is demonstrated for a phenol-amine system, which is a prototypical problem for condensed phase-proton transfer, and for model potentials undergoing wavepacket dynamics. In all cases, the approach yields trajectories that conserve energy while sampling rare events.

8.
J Asthma Allergy ; 17: 633-651, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39006241

RESUMO

Allergic rhinitis is a chronic non-infectious inflammation of the nasal mucosa mediated by specific IgE. Recently, the human microbiome has drawn broad interest as a potential new target for treating this condition. This paper succinctly summarizes the main findings of 17 eligible studies published by February 2024, involving 1044 allergic rhinitis patients and 954 healthy controls from 5 countries. These studies examine differences in the human microbiome across important mucosal interfaces, including the nasal and intestinal areas, between patients and controls. Overall, findings suggest variations in the gut microbiota between allergic rhinitis patients and healthy individuals, although the specific bacterial taxa that significantly changed were not always consistent across studies. Due to the limited scope of existing research and patient coverage, the relationship between the nasal microbiome and allergic rhinitis remains inconclusive. The article discusses the potential immune-regulating role of the gut microbiome in allergic rhinitis. Further well-designed clinical trials with large-scale recruitment of allergic rhinitis patients are encouraged.

9.
mBio ; 15(6): e0033924, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38988221

RESUMO

The emergence of oxacillin-susceptible methicillin-resistant Staphylococcus aureus (OS-MRSA) has imposed further challenges to the clinical management of MRSA infections. When exposed to ß-lactam antibiotics, these strains can easily acquire reduced ß-lactam susceptibility through chromosomal mutations, including those in RNA polymerase (RNAP) genes such as rpoBC, which may then lead to treatment failure. Despite the increasing prevalence of such strains and the apparent challenges they pose for diagnosis and treatment, there is limited information available on the actual mechanisms underlying such chromosomal mutation-related transitions to reduced ß-lactam susceptibility, as it does not directly associate with the expression of mecA. This study investigated the cellular physiology and metabolism of six missense mutants with reduced oxacillin susceptibility, each carrying respective mutations on RpoBH929P, RpoBQ645H, RpoCG950R, RpoCG498D, RpiAA64E, and FruBA211E, using capillary electrophoresis-mass spectrometry-based metabolomics analysis. Our results showed that rpoBC mutations caused RNAP transcription dysfunction, leading to an intracellular accumulation of ribonucleotides. These mutations also led to the accumulation of UDP-Glc/Gal and UDP-GlcNAc, which are precursors of UTP-associated peptidoglycan and wall teichoic acid. Excessive amounts of building blocks then contributed to the cell wall thickening of mutant strains, as observed in transmission electron microscopy, and ultimately resulted in decreased susceptibility to ß-lactam in OS-MRSA. IMPORTANCE: The emergence of oxacillin-susceptible methicillin-resistant Staphylococcus aureus (OS-MRSA) strains has created new challenges for treating MRSA infections. These strains can become resistant to ß-lactam antibiotics through chromosomal mutations, including those in the RNA polymerase (RNAP) genes such as rpoBC, leading to treatment failure. This study investigated the mechanisms underlying reduced ß-lactam susceptibility in four rpoBC mutants of OS-MRSA. The results showed that rpoBC mutations caused RNAP transcription dysfunction, leading to an intracellular accumulation of ribonucleotides and precursors of peptidoglycan as well as wall teichoic acid. This, in turn, caused thickening of the cell wall and ultimately resulted in decreased susceptibility to ß-lactam in OS-MRSA. These findings provide insights into the mechanisms of antibiotic resistance in OS-MRSA and highlight the importance of continued research in developing effective treatments to combat antibiotic resistance.


Assuntos
Antibacterianos , RNA Polimerases Dirigidas por DNA , Staphylococcus aureus Resistente à Meticilina , Testes de Sensibilidade Microbiana , Oxacilina , Staphylococcus aureus Resistente à Meticilina/genética , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/enzimologia , Oxacilina/farmacologia , RNA Polimerases Dirigidas por DNA/genética , RNA Polimerases Dirigidas por DNA/metabolismo , Antibacterianos/farmacologia , beta-Lactamas/farmacologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Mutação de Sentido Incorreto , Parede Celular/efeitos dos fármacos , Parede Celular/metabolismo , Parede Celular/genética , Humanos , Mutação , Metabolômica
10.
Sci Total Environ ; 947: 174637, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38986692

RESUMO

Microplastics are widespread in freshwaters, yet their interaction with navigational structures remains unclear. This study compared the distribution and characteristics of microplastics before and after navigation in Wabu Lake. Microplastic concentrations decreased significantly in both surface water and sediment due to navigation opened, from 13.7 ± 6.56 to 3.12 ± 1.8 p L-1 (p < 0.001) and from 568 ± 286 to 174 ± 60.2 p kg-1 (p < 0.001), respectively. Acrylates copolymer was frequently detected in surface water and sediment before navigation, whereas the dominant polymer after navigation was chlorinated polyisoprene in surface water and chlorinated polyethylene in sediment. The results showed that three-years dredging induced relatively severe microplastic pollution before navigation, however, these microplastics were apparently eliminated after navigation, as the distribution and characteristics of microplastics thoroughly varied. This study provides a valuable finding that microplastic transport process can be facilitated by water transfer project, which should be considered for preventing microplastic pollution.

11.
Dalton Trans ; 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38967448

RESUMO

Hg-based compounds show abundant structural diversity and distinguished properties. Herein, a new phase transition compound CsHg2I5 was reported. The high-temperature phase ß-CsHg2I5 with rare [Hg2I5] dimers was synthesized by the flux method at 573 K, and it shows a reversible phase transition at a low temperature of ∼100 K to form the low-temperature phase α-CsHg2I5. The two phases crystallize in the same P21/c space group, with different crystal structures. ß-CsHg2I5 is composed of rare [Hg2I5] dimers and [CsI11] polyhedral units, while α-CsHg2I5 is composed of [Hg4I11] and [CsI10] units. The experimental band gap of ß-CsHg2I5 was found to be 2.58 eV. Owing to the presence of [Hg2I5]∞ pseudo-layers, ß-CsHg2I5 exhibits large optical anisotropy with a calculated birefringence of 0.132@1064 nm. Meanwhile, ß-CsHg2I5 is a congruent compound and the congruent point is ∼481 K. Theoretical calculations indicate that the rare [Hg2I5] dimer is a nonlinear active unit, which can be used as a new fundamental building block for the design of advanced nonlinear optical materials. Moreover, a CsI-HgI2 pseudo-binary diagram was drawn. The results enrich the structural diversity of Hg-based halides and give some insights into the development of new functional materials based on rare [Hg2I5] dimers.

12.
Chem Sci ; 15(28): 10838-10850, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39027281

RESUMO

Macrophages are plastic and play a key role in the maintenance of tissue homeostasis. In cancer progression, macrophages also take part in all processes, from initiation to progression, to final tumor metastasis. Although energy deprivation and autophagy are widely used for cancer therapy, most of these strategies do not target macrophages, resulting in undesired effects and unsatisfactory outcomes for cancer immunotherapy. Herein, we developed a lanthanum nickel oxide (LNO) nanozyme with phosphatase-like activity for ATP hydrolysis. Meanwhile, the autophagy of macrophages induced by LNO promotes the polarization of macrophages from M2-like macrophages (M2) to M1-like macrophages (M1) and reduces tumor-associated macrophages in tumor-bearing mice, exhibiting the capability of killing tumor-associated macrophages and antitumor effects in vivo. Furthermore, pre-coating the surface of LNO with a myeloid cell membrane significantly enhanced antitumor immunity. Our findings demonstrate that phosphatase-like nanozyme LNO can specifically induce macrophage autophagy, which improves therapeutic efficacy and offers valuable strategies for cancer immunotherapy.

13.
J Environ Manage ; 365: 121506, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38901319

RESUMO

Straw biochar is a commonly recognized agricultural amendment that can improve soil quality and reduce carbon emissions while sequestering soil carbon. However, the mechanisms underlying biochar's effects on annual soil carbon emissions in seasonally frozen soil areas and intrinsic drivers have not been clarified. Here, a 2-y field experiment was conducted to investigate the effects of different biochar dosages (0, 15, and 30, t ha-1; B0 (CK), B15, and B30, respectively) on carbon emissions (CO2 and CH4) microbial colony count, and soil-environment factors. The study period was the full annual cycle, including the freeze-thaw period (FTP) and the crop growth period (CP). Structural equation modeling (SEM) was developed to reveal the key drivers and potential mechanisms of biochar on carbon emissions. Biochar application reduced soil carbon emissions, with the reduction rate positively related to the biochar application rate (B30 best). During FTP, the reduction rate was 11.5% for CO2 and 48.2% for CH4. During CP, the reduction rate was 17.9% for CO2 and 34.5% for CH4. Overall, compared with CK, B30 treatment had a significant effect on reducing total soil carbon emissions (P < 0.05), with an average decrease of 16.7% during the two-year test period. The study also showed that for soils with continuous annual cycles (FTP and CP), carbon emissions were best observed from 10:00-13:00. After two years of freeze-thaw cycling, biochar continued to improve soil physical and chemical properties, thereby increasing soil microbial colony count. Compared with B0, the B30 treatment significantly increased the total colony count by 74.3% and 263.8% during FTP and CP (P < 0.05). Structural equation modeling (SEM) indicated that, with or without biochar application, the soil physicochemical properties directly or indirectly affected soil CO2 and CH4 emission fluxes through microbial colony count. The total effects of biochar application on CO2 emission fluxes were 0.50 (P < 0.05) and 0.64 (P < 0.01), respectively, but there was no significant effect on CH4 emission fluxes (P > 0.05). Among them, soil water content (SWC), soil temperature (ST) and soil organic carbon (SOC) were the main environmental determinants of CO2 emission fluxes during the FTP and CP. The total effects were 0.57, 0.65, and 0.53, respectively. For CH4, SWC, soil salinity (SS) and actinomycete colony count were the main environmental factors affecting its emission. The total effects were 0.50, 0.45, 0.44, respectively. For freeze-thaw alternating soils, the application of biochar is a feasible option for addressing climate change through soil carbon sequestration and greenhouse gas emissions mitigation. Soil water-heat-salt-fertilization and microbial communities are important for soil carbon emissions as the reaction matrix and main participants of soil carbon and nitrogen biochemical transformation.


Assuntos
Carbono , Carvão Vegetal , Solo , Solo/química , Carvão Vegetal/química , Dióxido de Carbono/análise , Agricultura , Congelamento , Metano , Fazendas
14.
Sci Rep ; 14(1): 13475, 2024 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-38866983

RESUMO

Kidney renal clear cell carcinoma (KIRC) is the most common histological type of renal cancer, enhancer RNA plays a significant role in tumor growth, however, it has been less studied in renal cancer. The aim of this study was to investigate the role of eRNA AC003092.1 in KIRC. Clinical and RNA expression data were downloaded from a TCGA database, and performed bioinformatics analysis, including expression level analysis, survival analysis, clinical correlation analysis, immune correlation analysis. We further confirmed the expression level of AC003092.1 between normal and tumor cell, predicted the biological role of AC003092.1 in KIRC, and performed cell proliferation and wound healing assays, followed by GSEA enrichment analysis and western blot to detect the proteins of the enriched pathway. Bioinformatics results showed that AC003092.1 expression was elevated in tumor tissues, and knockdown of AC003092.1 expression inhibited cell proliferation and migration. GSEA and western blot results showed that knockdown AC003092.1 expression alleviated the extracellular matrix (ECM) process in KIRC cell lines. Our study provides evidence that AC003092.1 play an important role in KIRC, and AC003092.1 may promote tumor cell progression by affecting the ECM process during tumor development.


Assuntos
Carcinoma de Células Renais , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Neoplasias Renais , Humanos , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/patologia , Carcinoma de Células Renais/metabolismo , Neoplasias Renais/genética , Neoplasias Renais/patologia , Neoplasias Renais/metabolismo , Prognóstico , Proliferação de Células/genética , Linhagem Celular Tumoral , Regulação para Baixo/genética , Movimento Celular/genética , Feminino , Masculino , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Biologia Computacional/métodos , Pessoa de Meia-Idade , RNAs Intensificadores
15.
World J Clin Cases ; 12(17): 3235-3242, 2024 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-38898830

RESUMO

BACKGROUND: This reported procedure combines the orthopedic surgical robot with the unilateral biportal endoscopy-lumbar interbody fusion (UBE-LIF), utilizing the UBE's wide viewing field and operating space to perform minimally invasive decompressive fusion of the lesioned segment, and the orthopedic surgical robot's intelligence and precision to perform percutaneous pedicle screw placement. The advancement of this procedure lies in the superposition of advantages and offsetting disadvantages of the two new technologies, and the maximum effect of treatment is achieved with maximum minimization of invasiveness and precision under the monitoring of imaging instruments to maximize the benefit of patients, and this review reports a case of multiple-segment lumbar decompression and fusion surgery for lumbar disc herniation via robot-assisted UBE for reference. CASE SUMMARY: A 44-year-old patient presented to our hospital. Combining various clinical data, we diagnosed the patient with lumbar disc herniation with radiculopathy, lumbar spondylolisthesis, and lumbar spinal stenosis. We developed a surgical plan of "UBE decompression + UBE-LIF + orthopedic surgery robot-assisted percutaneous pedicle screw implantation for internal fixation". The results were satisfactory. CONCLUSION: We present an extremely rare case of multiple-segment lumbar decompression and fusion surgery for lumbar disc herniation via robot-assisted UBE and achieved good results. Therefore, the technique is worthy of clinical promotion.

16.
Commun Biol ; 7(1): 760, 2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38909165

RESUMO

Although the chloroplast genome (cpDNA) of higher plants is known to exist as a large protein-DNA complex called 'plastid nucleoid', researches on its DNA state and regulatory elements are limited. In this study, we performed the assay for transposase-accessible chromatin sequencing (ATAC-seq) on five common tissues across five grasses, and found that the accessibility of different regions in cpDNA varied widely, with the transcribed regions being highly accessible and accessibility patterns around gene start and end sites varying depending on the level of gene expression. Further analysis identified a total of 3970 putative protein binding footprints on cpDNAs of five grasses. These footprints were enriched in intergenic regions and co-localized with known functional elements. Footprints and their flanking accessibility varied dynamically among tissues. Cross-species analysis showed that footprints in coding regions tended to overlap non-degenerate sites and contain a high proportion of highly conserved sites, indicating that they are subject to evolutionary constraints. Taken together, our results suggest that the accessibility of cpDNA has biological implications and provide new insights into the transcriptional regulation of chloroplasts.


Assuntos
Genoma de Cloroplastos , Poaceae , Poaceae/genética , DNA de Cloroplastos/genética , Regulação da Expressão Gênica de Plantas , Cloroplastos/genética , Cloroplastos/metabolismo
17.
PLoS One ; 19(6): e0304149, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38848430

RESUMO

Glioblastoma, the most aggressive form of brain cancer, poses a significant global health challenge with a considerable mortality rate. With the predicted increase in glioblastoma incidence, there is an urgent need for more effective treatment strategies. In this study, we explore the potential of caerin 1.1 and 1.9, host defence peptides derived from an Australian tree frog, in inhibiting glioblastoma U87 and U118 cell growth. Our findings demonstrate the inhibitory impact of caerin 1.1 and 1.9 on cell growth through CCK8 assays. Additionally, these peptides effectively curtail the migration of glioblastoma cells in a cell scratch assay, exhibiting varying inhibitory effects among different cell lines. Notably, the peptides hinder the G0/S phase replication in both U87 and U118 cells, pointing to their impact on the cell cycle. Furthermore, caerin 1.1 and 1.9 show the ability to enter the cytoplasm of glioblastoma cells, influencing the morphology of mitochondria. Proteomics experiments reveal intriguing insights, with a decrease in CHI3L1 expression and an increase in PZP and JUNB expression after peptide treatment. These proteins play roles in cell energy metabolism and inflammatory response, suggesting a multifaceted impact on glioblastoma cells. In conclusion, our study underscores the substantial anticancer potential of caerin 1.1 and 1.9 against glioblastoma cells. These findings propose the peptides as promising candidates for further exploration in the realm of glioblastoma management, offering new avenues for developing effective treatment strategies.


Assuntos
Proliferação de Células , Regulação para Baixo , Glioblastoma , Mitocôndrias , Glioblastoma/metabolismo , Glioblastoma/patologia , Humanos , Proliferação de Células/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Linhagem Celular Tumoral , Regulação para Baixo/efeitos dos fármacos , Respiração Celular/efeitos dos fármacos , Animais , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/metabolismo , Movimento Celular/efeitos dos fármacos
18.
Sensors (Basel) ; 24(12)2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38931757

RESUMO

Remote sensing images are inevitably affected by the degradation of haze with complex appearance and non-uniform distribution, which remarkably affects the effectiveness of downstream remote sensing visual tasks. However, most current methods principally operate in the original pixel space of the image, which hinders the exploration of the frequency characteristics of remote sensing images, resulting in these models failing to fully exploit their representation ability to produce high-quality images. This paper proposes a frequency-oriented remote sensing dehazing Transformer named FOTformer, to explore information in the frequency domain to eliminate disturbances caused by haze in remote sensing images. It contains three components. Specifically, we developed a frequency-prompt attention evaluator to estimate the self-correlation of features in the frequency domain rather than the spatial domain, improving the image restoration performance. We propose a content reconstruction feed-forward network that captures information between different scales in features and integrates and processes global frequency domain information and local multi-scale spatial information in Fourier space to reconstruct the global content under the guidance of the amplitude spectrum. We designed a spatial-frequency aggregation block to exchange and fuse features from the frequency domain and spatial domain of the encoder and decoder to facilitate the propagation of features from the encoder stream to the decoder and alleviate the problem of information loss in the network. The experimental results show that the FOTformer achieved a more competitive performance against other remote sensing dehazing methods on commonly used benchmark datasets.

19.
Colloids Surf B Biointerfaces ; 241: 114055, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38936034

RESUMO

Cryopreservation is highly desired for long-term maintenance of the viability of living biosamples, while effective cell cryopreservation still relies heavily on the addition of dimethyl sulfoxide (DMSO) and fetal bovine serum (FBS). However, the intrinsic toxicity of DMSO is still a bottleneck, which could not only cause the clinical side effect but also induce cell genetic variants. In the meantime, the addition of FBS may bring potentially the risk of pathogenic microorganism contamination. The liquid marbles (LMs), a novel biotechnology tool for cell cryopreservation, which not only have a small volume system that facilitated recovery, but the hydrophobic shell also resisted the harm to cells caused by adverse environments. Previous LM-based cell cryopreservation relied heavily on the addition of FBS. In this work, we introduced acidic polyaspartic acid and polyglutamic acid as cryoprotectants to construct LM systems. LMs could burst in an instant to facilitate and achieve ultrarapid recovery process, and the hydrophilic carboxyl groups of the cryoprotectants could form hydrogen bonds with water molecules and further inhibit ice growth/formation to protect cells from cryoinjuries. The L929 cells could be well cryopreserved by acidic polyamino acid-based LMs. This new biotechnology platform is expected to be widely used for cell cryopreservation, which has the potential to propel LMs for the preservation of various functional cells in the future.

20.
Chin J Integr Med ; 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38941044

RESUMO

Liver ischemia-reperfusion injury (LIRI) is a pathological process involving multiple injury factors and cell types, with different stages. Currently, protective drugs targeting a single condition are limited in efficacy, and interventions on immune cells will also be accompanied by a series of side effects. In the current bottleneck research stage, the multi-target and obvious clinical efficacy of Chinese medicine (CM) is expected to become a breakthrough point in the research and development of new drugs. In this review, we summarize the roles of reactive oxygen species (ROS) and reactive nitrogen species (RNS) in various stages of hepatic ischemia-reperfusion and on various types of cells. Combined with the current research progress in reducing ROS/RNS with CM, new therapies and mechanisms for the treatment of hepatic ischemia-reperfusion are discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...