Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 140(15): 5045-5048, 2018 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-29601200

RESUMO

Gluco-azoles competitively inhibit glucosidases by transition-state mimicry and their ability to interact with catalytic acid residues in glucosidase active sites. We noted that no azole-type inhibitors described, to date, possess a protic nitrogen characteristic for 1 H-imidazoles. Here, we present gluco-1 H-imidazole, a gluco-azole bearing a 1 H-imidazole fused to a glucopyranose-configured cyclitol core, and three close analogues as new glucosidase inhibitors. All compounds inhibit human retaining ß-glucosidase, GBA1, with the most potent ones inhibiting this enzyme (deficient in Gaucher disease) on a par with glucoimidazole. None inhibit glucosylceramide synthase, cytosolic ß-glucosidase GBA2 or α-glucosidase GAA. Structural, physical and computational studies provide first insights into the binding mode of this conceptually new class of retaining ß-glucosidase inhibitors.


Assuntos
Azóis/farmacologia , Inibidores Enzimáticos/farmacologia , beta-Glucosidase/antagonistas & inibidores , Azóis/síntese química , Azóis/química , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Humanos , Modelos Moleculares , Conformação Molecular , beta-Glucosidase/metabolismo
2.
J Am Chem Soc ; 139(19): 6534-6537, 2017 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-28463498

RESUMO

The conformational analysis of glycosidases affords a route to their specific inhibition through transition-state mimicry. Inspired by the rapid reaction rates of cyclophellitol and cyclophellitol aziridine-both covalent retaining ß-glucosidase inhibitors-we postulated that the corresponding carba "cyclopropyl" analogue would be a potent retaining ß-glucosidase inhibitor for those enzymes reacting through the 4H3 transition-state conformation. Ab initio metadynamics simulations of the conformational free energy landscape for the cyclopropyl inhibitors show a strong bias for the 4H3 conformation, and carba-cyclophellitol, with an N-(4-azidobutyl)carboxamide moiety, proved to be a potent inhibitor (Ki = 8.2 nM) of the Thermotoga maritima TmGH1 ß-glucosidase. 3-D structural analysis and comparison with unreacted epoxides show that this compound indeed binds in the 4H3 conformation, suggesting that conformational strain induced through a cyclopropyl unit may add to the armory of tight-binding inhibitor designs.


Assuntos
Cicloexanóis/farmacologia , Inibidores de Glicosídeo Hidrolases/farmacologia , alfa-Glucosidases/metabolismo , Cicloexanóis/química , Inibidores de Glicosídeo Hidrolases/química , Modelos Moleculares , Estrutura Molecular , Teoria Quântica , Thermotoga maritima/enzimologia
3.
J Biol Chem ; 289(51): 35351-62, 2014 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-25344605

RESUMO

Retaining ß-exoglucosidases operate by a mechanism in which the key amino acids driving the glycosidic bond hydrolysis act as catalytic acid/base and nucleophile. Recently we designed two distinct classes of fluorescent cyclophellitol-type activity-based probes (ABPs) that exploit this mechanism to covalently modify the nucleophile of retaining ß-glucosidases. Whereas ß-epoxide ABPs require a protonated acid/base for irreversible inhibition of retaining ß-glucosidases, ß-aziridine ABPs do not. Here we describe a novel sensitive method to identify both catalytic residues of retaining ß-glucosidases by the combined use of cyclophellitol ß-epoxide- and ß-aziridine ABPs. In this approach putative catalytic residues are first substituted to noncarboxylic amino acids such as glycine or glutamine through site-directed mutagenesis. Next, the acid/base and nucleophile can be identified via classical sodium azide-mediated rescue of mutants thereof. Selective labeling with fluorescent ß-aziridine but not ß-epoxide ABPs identifies the acid/base residue in mutagenized enzyme, as only the ß-aziridine ABP can bind in its absence. The Absence of the nucleophile abolishes any ABP labeling. We validated the method by using the retaining ß-glucosidase GBA (CAZy glycosylhydrolase family GH30) and then applied it to non-homologous (putative) retaining ß-glucosidases categorized in GH1 and GH116: GBA2, GBA3, and LPH. The described method is highly sensitive, requiring only femtomoles (nanograms) of ABP-labeled enzymes.


Assuntos
Aminoácidos/metabolismo , Cicloexanóis/metabolismo , Sondas Moleculares/metabolismo , beta-Glucosidase/metabolismo , Substituição de Aminoácidos , Aminoácidos/química , Aminoácidos/genética , Animais , Aziridinas/química , Aziridinas/metabolismo , Células COS , Domínio Catalítico , Chlorocebus aethiops , Cicloexanóis/química , Compostos de Epóxi/química , Compostos de Epóxi/metabolismo , Humanos , Hidrólise , Immunoblotting/métodos , Sondas Moleculares/química , Mutagênese Sítio-Dirigida , Mutação de Sentido Incorreto , Reprodutibilidade dos Testes , Azida Sódica/química , Azida Sódica/metabolismo , Especificidade por Substrato , beta-Glucosidase/química , beta-Glucosidase/genética
4.
Chemistry ; 20(35): 10864-72, 2014 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-25100671

RESUMO

Activity-based protein profiling has emerged as a powerful discovery tool in chemical biology and medicinal chemistry research. Success of activity-based protein profiling hinges on the presence of compounds that can covalently and irreversibly bind to enzymes, do so selectively in the context of complex biological samples, and subsequently report on the selected pool of proteins. Such tagged molecules featuring an electrophilic trap, termed activity-based probes, have been developed with most success for serine hydrolases and various protease families (serine proteases, cysteine proteases, proteasomes). This concept presents the current progress and future directions in the design of activity-based probes targeting retaining glycosidases, enzymes that employ a double displacement mechanism in the hydrolysis of glycosidic bonds with overall retention. In contrast to inverting glycosidases, retaining glycosidases form a covalent intermediate with their substrates during the catalytic process and are therefore amenable to activity-based protein profiling studies.


Assuntos
Inibidores Enzimáticos/síntese química , Glicosídeo Hidrolases/antagonistas & inibidores , Glicosídeo Hidrolases/metabolismo , Sondas Moleculares/química , Desenho de Fármacos , Ativação Enzimática/efeitos dos fármacos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Estrutura Molecular
5.
Org Biomol Chem ; 12(39): 7786-91, 2014 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-25156485

RESUMO

The natural product, cyclophellitol and its aziridine analogue are potent mechanism-based retaining ß-glucosidase inhibitors. In this paper we explore the inhibitory potency of a number of cyclophellitol analogues against the three human retaining ß-glucosidases, GBA, GBA2 and GBA3. We demonstrate that N-alkyl cyclophellitol aziridine is at least equally potent in inhibiting the enzymes evaluated as its N-acyl congener, whereas the N-sulfonyl analogue is a considerably weaker inhibitor. Our results complement the literature on the inhibitory potency of cyclophellitol analogues and hold promise for the future design of more effective activity-based retaining glycosidase probes with respect to probe stability in physiological media.


Assuntos
Cicloexanóis/química , Cicloexanóis/farmacologia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , beta-Glucosidase/antagonistas & inibidores , Humanos
6.
Angew Chem Int Ed Engl ; 51(50): 12529-33, 2012 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-23139194

RESUMO

A high-end label: Cyclophellitol aziridine-type activity-based probes allow for ultra-sensitive visualization of mammalian ß-glucosidases (GBA1, GBA2, GBA3, and LPH) as well as several non-mammalian ß-glucosidases (see picture). These probes offer new ways to study ß-exoglucosidases, and configurational isomers of the cyclophellitol aziridine core may give activity-based probes targeting other retaining glycosidase families.


Assuntos
Celulases/metabolismo , Corantes Fluorescentes/química , Animais , Aziridinas/química , Encéfalo/enzimologia , Celulases/antagonistas & inibidores , Celulases/genética , Cicloexanóis/química , Cicloexanóis/metabolismo , Células Hep G2 , Humanos , Isomerismo , Camundongos , Proteômica , Proteínas Recombinantes/antagonistas & inibidores , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética
7.
Acc Chem Res ; 44(9): 718-29, 2011 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-21797256

RESUMO

The close interaction between organic chemistry and biology goes back to the late 18th century, when the modern natural sciences began to take shape. After synthetic organic chemistry arose as a discipline, organic chemists almost immediately began to pursue the synthesis of naturally occurring compounds, thereby contributing to the understanding of their functions in biological processes. Research in those days was often remarkably interdisciplinary; in fact, it constituted chemical biology research before the phrase even existed. For example, histological dyes, both of an organic and inorganic nature, were developed and applied by independent researchers (Gram and Golgi) with the aim of visualizing cellular substructures (the bacterial cell wall and the Golgi apparatus). Over the years, as knowledge within the various fields of the natural sciences deepened, research disciplines drifted apart, becoming rather monodisciplinary. In these years, broadly ranging from the end of World War II to about the 1980s, organic chemistry continued to impact life sciences research, but contributions were of a more indirect nature. As an example, the development of the polymerase chain reaction, from which molecular biology and genetics research have greatly profited, was partly predicated on the availability of synthetic oligonucleotides. These molecules first became available in the late 1960s, the result of organic chemists pursuing the synthesis of DNA oligomers primarily because of the synthetic challenges involved. Today, academic natural sciences research is again becoming more interdisciplinary, and sometimes even multidisciplinary. What was termed "chemical biology" by Stuart Schreiber at the end of the last century can be roughly described as the use of intellectually chemical approaches to shed light on processes that are fundamentally rooted in biology. Chemical tools and techniques that are developed for biological studies in the exciting and rapidly evolving field of chemical biology research include contributions from many areas of the multifaceted discipline of chemistry, and particularly from organic chemistry. Researchers apply knowledge inherent to organic chemistry, such as reactivity and selectivity, to the manipulation of specific biomolecules in biological samples (cell extracts, living cells, and sometimes even animal models) to gain insight into the biological phenomena in which these molecules participate. In this Account, we highlight some of the recent developments in chemical biology research driven by organic chemistry, with a focus on bioorthogonal chemistry in relation to activity-based protein profiling. The rigorous demands of bioorthogonality have not yet been realized in a truly bioorthogonal reagent pair, but remarkable progress has afforded a range of tangible contributions to chemical biology research. Activity-based protein profiling, which aims to obtain information on the workings of a protein (or protein family) within the larger context of the full biological system, has in particular benefited from these advances. Both activity-based protein profiling and bioorthogonal chemistry have been around for approximately 15 years, and about 8 years ago the two fields very profitably intersected. We expect that each discipline, both separately and in concert, will continue to make important contributions to chemical biology research.


Assuntos
Proteínas/metabolismo , Alcinos/química , Azidas/química , Biotina/química , Química Click , Corantes Fluorescentes/química , Fosfinas/química , Complexo de Endopeptidases do Proteassoma/química , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas/química
8.
Chembiochem ; 12(8): 1263-9, 2011 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-21538758

RESUMO

Activity-based protein profiling (ABPP) is a versatile strategy to report on enzyme activity in vitro, in situ, and in vivo. The development and use of ABPP tools and techniques has met with considerable success in monitoring physiological processes involving esterases and proteases. Activity-based profiling of glycosidases, on the other hand, has proven more difficult, and to date no broad-spectrum glycosidase activity-based probes (ABPs) have been reported. In a comparative study, we investigated both 2-deoxy-2-fluoroglycosides and cyclitol epoxides for their utility as a starting point towards retaining ß-glucosidase ABP. We also investigated the merits of direct labeling and two-step bio-orthogonal labeling in reporting on glucosidase activity under various conditions. Our results demonstrate that 1) in general cyclitol epoxides are the superior glucosidase ABPs, 2) that direct labeling is the more efficient approach but it hinges on the ability of the glucosidase to be accommodated in the active site of the reporter (BODIPY) entity, and 3) that two-step bio-orthogonal labeling can be achieved on isolated enzymes but translating this protocol to cell extracts requires more investigation.


Assuntos
Celulases/química , Domínio Catalítico , Celulases/antagonistas & inibidores , Química Click , Inibidores Enzimáticos/farmacologia , Concentração Inibidora 50 , Estrutura Molecular
9.
Nat Chem Biol ; 6(12): 907-13, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21079602

RESUMO

Deficiency of glucocerebrosidase (GBA) underlies Gaucher disease, a common lysosomal storage disorder. Carriership for Gaucher disease has recently been identified as major risk for parkinsonism. Presently, no method exists to visualize active GBA molecules in situ. We here report the design, synthesis and application of two fluorescent activity-based probes allowing highly specific labeling of active GBA molecules in vitro and in cultured cells and mice in vivo. Detection of in vitro labeled recombinant GBA on slab gels after electrophoresis is in the low attomolar range. Using cell or tissue lysates, we obtained exclusive labeling of GBA molecules. We present evidence from fluorescence-activated cell sorting analysis, fluorescence microscopy and pulse-chase experiments of highly efficient labeling of GBA molecules in intact cells as well as tissues of mice. In addition, we illustrate the use of the fluorescent probes to study inhibitors and tentative chaperones in living cells.


Assuntos
Glucosilceramidase/química , Animais , Compostos de Boro/química , Células Cultivadas , Cicloexanóis/química , Desenho de Fármacos , Eletroforese em Gel de Poliacrilamida , Inibidores Enzimáticos/farmacologia , Ensaio de Imunoadsorção Enzimática , Fibroblastos/química , Fibroblastos/metabolismo , Citometria de Fluxo , Corantes Fluorescentes/química , Doença de Gaucher/metabolismo , Glucosilceramidase/antagonistas & inibidores , Glucosilceramidase/metabolismo , Imino Piranoses/farmacologia , Camundongos , Microscopia de Fluorescência , Chaperonas Moleculares/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...