Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 262(Pt 1): 129913, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38336312

RESUMO

SQUAMOSA promoter-binding protein-like (SPL) family genes play an important role in regulating plant flowering and resistance to stress. However, understanding the function of the SPL family in mango is still limited. In a previous study, two MiSPL3 genes, MiSPL3a and MiSPL3b (MiSPL3a/b), were identified in 'SiJiMi' mango and exhibited the highest expression in flowers at the initial flowering stage [24]. Therefore, in this study, we further investigated the expression pattern and gene function of MiSPL3a/b. The results showed that the expression of MiSPL3a was greatest at the end of floral bud differentiation, and MiSPL3b was expressed mainly during the flowering induction and vegetative growth stages. Subcellular localization showed that MiSPL3a/b localized to the nucleus. In addition, ectopic expression of MiSPL3a/b promoted earlier flowering in Arabidopsis thaliana by 3 d-6 d than in wild-type (WT) plants, which increased the expression of SUPPRESSOR OF CONSTANS1 (AtSOC1), FRUITFULL (AtFUL), and APETALA1 (AtAP1). MiSPL3a/b transgenic lines exhibited increased tolerance to drought, GA3, and abscisic acid (ABA) treatments but were sensitive to Pro-Ca treatment. Furthermore, protein interaction analysis revealed that MiSPL3a/b could interact with several stress-related proteins, flowering-related proteins, and the bridge protein 14-3-3. Taken together, MiSPL3a and MiSPL3b acted as positive regulators of flowering time and stress tolerance in transgenic Arabidopsis.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Ácido Abscísico/metabolismo , Flores/genética , Regiões Promotoras Genéticas/genética , Regulação da Expressão Gênica de Plantas , Plantas Geneticamente Modificadas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
2.
J Plant Physiol ; 285: 153994, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37105044

RESUMO

Flowering promoting factor (FPF) genes play a substantial regulatory role in the process of flowering. In the present study, four MiFPF genes, namely, MiFPF1, MiFPF2, MiFPF3a, and MiFPF3b, were obtained from mango (Mangifera indica L.). Tissue expression analysis showed that MiFPFs were expressed in all mango tissues. Specifically, MiFPF1 and MiFPF2 were highly expressed in leaves, while MiFPF3a and MiFPF3b were highly expressed in flowers and buds. The four MiFPF proteins localize to the nucleus. Overexpression of MiFPFs in transgenic Arabidopsis resulted in early flowering and upregulated the expression of APETAL1 (AP1), FLOWERING LOCUS D (FD) and FLOWERING LOCUS T (FT). MiFPF genes increased the root growth of transgenic Arabidopsis plants under gibberellin treatment. BiFC assays showed that MiFPFs can interact with several DELLA proteins. Taken together, our results demonstrate that the MiFPF gene was involved not only in promoting flowering but also in increasing root growth under gibberellin (GA3) treatment.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Mangifera , Arabidopsis/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Giberelinas/metabolismo , Regulação da Expressão Gênica de Plantas , Flores , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Proteínas de Arabidopsis/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...