Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-1008753

RESUMO

This study investigated the mechanism of Gegen Qinlian Decoction(GQD) in improving glucose metabolism in vitro and in vivo by alleviating endoplasmic reticulum stress(ERS). Molecular docking was used to predict the binding affinity between the main effective plasma components of GQD and ERS-related targets. Liver tissue samples were obtained from normal rats, high-fat-induced diabetic rats, rats treated with metformin, and rats treated with GQD. RNA and protein were extracted. qPCR was used to measure the mRNA expression of ERS marker glucose-regulated protein 78(GRP78), and unfolded protein response(UPR) genes inositol requiring enzyme 1(Ire1), activating transcription factor 6(Atf6), Atf4, C/EBP-homologous protein(Chop), and caspase-12. Western blot was used to detect the protein expression of GRP78, IRE1, protein kinase R-like ER kinase(PERK), ATF6, X-box binding protein 1(XBP1), ATF4, CHOP, caspase-12, caspase-9, and caspase-3. The calcium ion content in liver tissues was determined by the colorimetric assay. The ERS-HepG2 cell model was established in vitro by inducing with tunicamycin for 6 hours, and 2.5%, 5%, and 10% GQD-containing serum were administered for 9 hours. The glucose oxidase method was used to measure extracellular glucose levels, flow cytometry to detect cell apoptosis, glycogen staining to measure cellular glycogen content, and immunofluorescence to detect the expression of GRP78. The intracellular calcium ion content was measured by the colorimetric assay. Whereas Western blot was used to detect GRP78 and ERS-induced IRE1, PERK, ATF6, and eukaryotic translation initiation factor 2α(eIF2α) phosphorylation. Additionally, the phosphorylation levels of insulin receptor substrate 1(IRS1), phosphatidylinositol 3-kinase regulatory subunit p85(PI3Kp85), and protein kinase B(Akt), which were involved in the insulin signaling pathway, were also measured. In addition, the phosphorylation levels of c-Jun N-terminal kinases(JNKs), which were involved in both the ERS and insulin signaling pathways, were measured by Western blot. Molecular docking results showed that GRP78, IRE1, PERK, ATF4, and various compounds such as baicalein, berberine, daidzein, jateorhizine, liquiritin, palmatine, puerarin and wogonoside had strong binding affinities, indicating that GQD might interfere with ERS-induced UPR. In vivo results showed that GQD down-regulated the mRNA transcription of Ire1, Atf6, Atf4, Grp78, caspase-12, and Chop in diabetic rats, and down-regulated GRP78, IRE1, PERK, as well as ERS-induced apoptotic factors ATF4 and CHOP, caspase-12, caspase-9, and caspase-3, while up-regulating XBP1 to enhance adaptive UPR. In addition, GQD increased the calcium ion content in liver tissues, which facilitated correct protein folding. In vitro results showed that GQD increased glucose consumption in ERS-induced HepG2 cells without significantly affecting cell viability, increased liver glycogen synthesis, down-regulated ATF6 and p-eIF2α(Ser51), and down-regulated IRE1, PERK, and GRP78, as well as p-IRS1(Ser312) and p-JNKs(Thr183/Tyr185), while up-regulating p-PI3Kp85(Tyr607) and p-Akt(Ser473). These findings suggested that GQD alleviates excessive ERS in the liver, reduces insulin resistance, and improves hepatic glucose metabolism in vivo and in vitro.


Assuntos
Ratos , Animais , Proteínas Proto-Oncogênicas c-akt , Chaperona BiP do Retículo Endoplasmático , Caspase 3 , Caspase 9 , Diabetes Mellitus Experimental , Caspase 12 , Cálcio/farmacologia , Simulação de Acoplamento Molecular , Estresse do Retículo Endoplasmático , Proteínas Serina-Treonina Quinases/genética , Fígado , Apoptose , Insulina , Glucose , Glicogênio/farmacologia , RNA Mensageiro
2.
J Environ Manage ; 316: 115230, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35537269

RESUMO

Excess sludge management is a restrictive factor for the development of municipal wastewater treatment plants. The addition of metabolic uncouplers has been proven to be effective in sludge reduction. However, the long-term effect of metabolic uncoupler o-chlorophenol (oCP) on the biological wastewater treatment system operated in anaerobic-oxic mode is still unclear. To this end, two parallel reactors operated in anaerobic-oxic mode with and without 10 mg/L of oCP addition were investigated for 91 days. The results showed that 56.1 ± 2.3% of sludge reduction was achieved in the oCP-added system, and the nitrogen and phosphorus removal ability were negatively affected. Dosing oCP stimulated the formation of microbial products and increased the DNA concentration, but resulted in a decrease in the electronic transport activity of activated sludge. Microbial community analysis further demonstrated that a significant reduction of bacterial richness and diversity occurred after oCP dosing. However, after stopping oCP addition, the pollutant removal ability of activated sludge was gradually increased, but the sludge yield, as well as species richness and diversity, did not recover to the previous level. This study will provide insightful guidance on the long-term application of metabolic uncouplers in the activated sludge system.


Assuntos
Clorofenóis , Microbiota , Anaerobiose , Reatores Biológicos , Nitrogênio , Esgotos/microbiologia , Eliminação de Resíduos Líquidos/métodos
3.
J Hazard Mater ; 384: 121311, 2020 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-31585278

RESUMO

Metabolic uncouplers are widely used for reducing excess sludge in biological wastewater treatment systems. However, the formation of microbial products, such as extracellular polymeric substances, polyhydroxyalkanoate and soluble microbial products by activated sludge in the presence of metabolic uncouplers remains unrevealed. In this study, the impacts of a metabolic uncoupler o-chlorophenol (oCP) on the reduction of activated sludge yield and formation of microbial products in laboratory-scale sequencing batch reactors (SBRs) were evaluated for a long-term operation. The results show the average reduction of sludge yield in the four reactors was 17.40%, 25.80%, 33.02% and 39.50%, respectively, when dosing 5, 10, 15, and 20 mg/L oCP. The oCP addition slightly reduced the pollutant removal efficiency and decreased the formation of soluble microbial products in the SBRs, but stimulated the productions of extracellular polymeric substances and polyhydroxyalkanoate in activated sludge. Furthermore, the significant reduction of electronic transport system activity occurred after the oCP addition. Microbial community analysis of the activated sludge indicates dosing oCP resulted in a decrease of sludge richness and diversity in the SBRs. Hopefully, this study would provide useful information for reducing sludge yield in biological wastewater treatment systems and behaviors of activated sludge in the presence of uncouplers.


Assuntos
Clorofenóis/farmacologia , Esgotos/microbiologia , Desacopladores/farmacologia , Águas Residuárias/microbiologia , Análise da Demanda Biológica de Oxigênio , Reatores Biológicos , DNA Bacteriano/biossíntese , DNA Bacteriano/genética , Polímeros/química , Eliminação de Resíduos Líquidos , Poluentes Químicos da Água/química
4.
Acta Cardiol ; 70(1): 67-72, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26137805

RESUMO

The angiotensin II type 1 receptor (AT1R) antagonist protects the heart against acute ischaemia-reperfusion injury. The underlying mechanism is unclear. To determine the effects of angiotensin II type 1 receptor blockade, valsartan on AT1 and AT2 receptor during ischaemia reperfusion in isolated rat, the hearts of 24 SD rats were isolated, linked to Langendorff perfusion apparatus, and exposed to ischaemia for 30 min.The left ventricular systolic pressure, maximal uprising velocity of left ventricular pressure (+dp/dt(max)), maximal decreasing velocity of left ventricular pressure (-dp/dt(max)) and coronary flow were measured after stabilization of the perfusion.The isoenzyme of creatine kinase in the effluent liquid from the heart, AT1 and AT2 receptor mRNA and protein expression were measured after stabilization of the perfusion. The results showed that ischaemia-reperfusion induced a marked decrease in left ventricular systolic pressure, +dp/dt(max) and -dp/dt(max) indicating severe cardiac dysfunction and decreased coronary effluence. Concurrently, myocardial AT1 and AT2 receptor mRNA and protein expression were increased with valsartan. However, AT2 receptor mRNA and protein expression decreased during ischaemia-reperfusion. The creatine kinase levels at different time points of the valsartan group were significantly lower. The results suggested that valsartan improved left ventricular function and increased coronary effluence because the angiotensin receptor blocker valsartan induced cardioprotection associated with upregulating AT2 receptor protein and mRNA expression after ischaemia-reperfusion in isolated rats.


Assuntos
Regulação da Expressão Gênica , Traumatismo por Reperfusão Miocárdica/genética , RNA Mensageiro/genética , Receptor Tipo 2 de Angiotensina/genética , Tetrazóis/farmacologia , Regulação para Cima/efeitos dos fármacos , Valina/análogos & derivados , Bloqueadores do Receptor Tipo 1 de Angiotensina II/farmacologia , Animais , Western Blotting , Circulação Coronária/efeitos dos fármacos , Modelos Animais de Doenças , Masculino , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Traumatismo por Reperfusão Miocárdica/metabolismo , Ratos , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase em Tempo Real , Receptor Tipo 2 de Angiotensina/biossíntese , Valina/farmacologia , Valsartana
5.
Biochem Biophys Res Commun ; 439(2): 235-40, 2013 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-23973488

RESUMO

Apelin-13 plays an important role in the migration and proliferation of vascular smooth muscle cells (VSMCs); however, the underlying mechanisms are still unclear. Egr-1 is a nuclear transcription factor, which is considered to be the critical initiating factor of the processes of VSMC proliferation and migration. Egr-1 is known to regulate the expression of osteopontin (OPN), which is a marker of the phenotypic modulation that is a necessary condition of VSMC proliferation and migration. We hypothesized that the role of Apelin-13 is mediated via upregulation of Egr-1. To test this hypothesis, we analyzed the effects of Apelin-13 treatment on Egr-1 mRNA and protein expression in A10 rat aortic VSMCs by RT-PCR and Western blotting, respectively. Results showed that, Apelin-13 upregulated the expression of Egr-1. Furthermore, treatment with the extracellular-regulated protein kinase (ERK) inhibitor, PD98059, inhibited the upregulation of Egr-1 by Apelin-13. In addition, this upregulation was inhibited by treatment of VSMCs with the Egr-1 specific deoxyribozyme ED5 (DNAenzyme/10-23 DRz). Furthermore, ED5 treatment was found to significantly inhibit Apelin-13-induced migration and proliferation of VSMCs using transwell and MTT assays, respectively. The evaluation of OPN mRNA and protein expression levels by RT-PCR and Western blot analyses revealed that ED5 treatment also inhibited Apelin-13-induced OPN upregulation. The results of this study indicated that Apelin-13 upregulates Egr-1 via ERK. Furthermore, Apelin-13 induced the proliferation and migration of VSMCs as well as the upregulation of OPN via the upregulation of Egr-1. These results will provide an important theoretical and experimental basis for the control of inappropriate remodeling of vessel walls, and will hopefully lead to the prevention and treatment of vascular remodeling diseases.


Assuntos
Proteína 1 de Resposta de Crescimento Precoce/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Miócitos de Músculo Liso/citologia , Miócitos de Músculo Liso/metabolismo , Regulação para Cima , Animais , Linhagem Celular , Movimento Celular , Proliferação de Células , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Sistema de Sinalização das MAP Quinases , Osteopontina/genética , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...