Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phytother Res ; 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38818771

RESUMO

Doxorubicin (Dox) is a highly effective anti-neoplastic agent. Still, its utility in the clinic has been hindered by toxicities, including vomiting, hematopoietic suppression and nausea, with cardiotoxicity being the most serious side effect. Genistein (Gen) is a natural product with extensive biological effects, including anti-oxidation, anti-tumor, and cardiovascular protection. This study evaluated whether Gen protected the heart from Dox-induced cardiotoxicity and explored the underlying mechanisms. Male Sprague-Dawley (SD) rats were categorized into control (Ctrl), genistein (Gen), doxorubicin (Dox), genistein 20 mg/kg/day + doxorubicin (Gen20 + Dox) and genistein 40 mg/kg/day + doxorubicin (Gen40 + Dox) groups. Six weeks after injection, immunohistochemistry (IHC), transmission electron microscopy (TEM), and clinical cardiac function analyses were performed to evaluate the effects of Dox on cardiac function and structural alterations. Furthermore, each heart histopathological lesions were given a score of 0-3 in compliance with the articles for statistical analysis. In addition, molecular and cellular response of H9c2 cells toward Dox were evaluated through western blotting, Cell Counting Kit-8 (CCK8), AO staining and calcein AM/PI assay. Dox (5 µM in vitro and 18 mg/kg in vivo) was used in this study. In vivo, low-dose Gen pretreatment protected the rat against Dox-induced cardiac dysfunction and pathological remodeling. Gen inhibited extracellular signal-regulated kinase1/2 (ERK1/2)'s phosphorylation, increased the protein levels of STAT3 and c-Myc, and decreased the autophagy and apoptosis of cardiomyocytes. U0126, a MEK1/2 inhibitor, can mimic the effect of Gen in protecting against Dox-induced cytotoxicity both in vivo and in vitro. Molecular docking analysis showed that Gen forms a stable complex with ERK1/2. Gen protected the heart against Dox-induced cardiomyocyte autophagy and apoptosis through the ERK/STAT3/c-Myc signaling pathway.

2.
Materials (Basel) ; 17(6)2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38541395

RESUMO

In this paper, we demonstrate the significant impact of the solution flow and electrical field on the homogeneity of large-scale ZnO nanorod electrodeposition from an aqueous solution containing zinc nitrate and ammonium nitrate, primarily based on the X-ray fluorescence results. The homogeneity can be enhanced by adjusting the counter electrode size and solution flow rate. We have successfully produced relatively uniform nanorod arrays on an 8 × 10 cm2 i-ZnO-coated fluorine-doped tin oxide (FTO) substrate using a compact counter electrode and a vertical stirring setup. The as-grown nanorods exhibit similar surface morphologies and dominant, intense, almost uniform near-band-edge emissions in different regions of the sample. Additionally, the surface reflectance is significantly reduced after depositing the ZnO nanorods, achieving a moth-eye effect through subwavelength structuring. This effect of the nanorod array structure indicates that it can improve the utilization efficiency of light reception or emission in various optoelectronic devices and products. The large-scale preparation of ZnO nanorods is more practical to apply and has an extremely broad application value. Based on the research results, it is feasible to prepare large-scale ZnO nanorods suitable for antireflective coatings and commercial applications by optimizing the electrodeposition conditions.

3.
Cell Mol Life Sci ; 80(9): 246, 2023 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-37572114

RESUMO

Stress-induced cardiovascular diseases characterized by inflammation are among the leading causes of morbidity and mortality in postmenopausal women worldwide. Estradiol (E2) is known to be cardioprotective via the modulation of inflammatory mediators during stress. But the mechanism is unclear. TNFα, a key player in inflammation, is primarily converted to its active form by 'A Disintegrin and Metalloprotease 17' (ADAM17). We investigated if E2 can regulate ADAM17 during stress. Experiments were performed using female FVB wild-type (WT), C57BL/6 WT, and G protein-coupled estrogen receptor 1 knockout (GPER-1 KO) mice and H9c2 cells. The study revealed a significant increase in cardiac injury and inflammation during isoproterenol (ISO)-induced stress in ovariectomized (OVX) mice. Additionally, ADAM17's membrane content (mADAM17) was remarkably increased in OVX and GPER-1 KO mice during stress. However, in vivo supplementation of E2 significantly reduced cardiac injury, mADAM17, and inflammation. Also, administering G1 (GPER-1 agonist) in mice under stress reduced mADAM17. Further experiments demonstrated that E2, via GPER-1/PI3K pathway, localized ADAM17 at the perinuclear region by normalizing ß1AR-Gαs, mediating the switch from ß2AR-Gαi to Gαs, and reducing phosphorylated kinases, including p38 MAPKs and ERKs. Thus, using G15 and LY294002 to inhibit GPER-1 and its down signaling molecule, PI3K, respectively, in the presence of E2 during stress resulted in the disappearance of E2's modulatory effect on mADAM17. In vitro knockdown of ADAM17 during stress significantly reduced cardiac injury and inflammation, confirming its significant inflammatory role. These interesting findings provide novel evidence that E2 and G1 are potential therapeutic agents for ADAM17-induced inflammatory diseases associated with postmenopausal females.


Assuntos
Estradiol , Fosfatidilinositol 3-Quinases , Feminino , Camundongos , Animais , Estradiol/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Camundongos Endogâmicos C57BL , Transdução de Sinais , Receptores Acoplados a Proteínas G/metabolismo , Inflamação
4.
Materials (Basel) ; 16(4)2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36837365

RESUMO

A high-performance GaAs nanowire photodetector was fabricated based on the modification of Au nanoparticles (NPs). Au nanoparticles prepared by thermal evaporation were used to modify the defects on the surface of GaAs nanowires. Plasmons and Schottky barriers were also introduced on the surface of the GaAs nanowires, to enhance their light absorption and promote the separation of carriers inside the GaAs nanowires. The research results show that under the appropriate modification time, the dark current of GaAs nanowire photodetectors was reduced. In addition, photocurrent photodetectors increased from 2.39 × 10-10 A to 1.26 × 10-9 A. The responsivity of GaAs nanowire photodetectors correspondingly increased from 0.569 A∙W-1 to 3.047 A∙W-1. The reasons for the improvement of the photodetectors' performance after modification were analyzed through the energy band theory model. This work proposes a new method to improve the performance of GaAs nanowire photodetectors.

5.
Food Funct ; 14(2): 934-945, 2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36541083

RESUMO

Backgrounds: Doxorubicin (Dox) is a classical antitumor antibiotic widely restricted for use due to its cardiotoxicity. Daidzein (Daid) is a soy isoflavone that enhances antioxidant enzyme systems and inhibits apoptosis to prevent cardiovascular diseases. In this study, we intended to assess whether Daid protects against Dox-induced cardiotoxicity and explored its underlying mechanisms. Methods: Male Sprague-Dawley (SD) rats were divided into five groups: control (Ctrl), 40 mg per kg per day Daidzein (Daid), 3 mg per kg per week doxorubicin (Dox), 20 mg per kg per day Daidzein + 3 mg per kg per week doxorubicin (Daid20 + Dox) and 40 mg per kg per day Daidzein + 3 mg per kg per week doxorubicin (Daid40 + Dox) groups. Cardiac function assessments, immunohistochemistry (IHC) and immunofluorescence (IF) analyses were initially performed in each group of rats. Secondly, the cell proliferative capacity analysis, AO staining, and LC3 puncta analysis were employed to evaluate the cellular response to Dox in H9c2 cells. Ultimately, the protein expressions of cleaved caspase3, LC3 II, Bcl-2, Bax, Akt, p-Akt, and cyclin D1 were examined by western blotting. Results: Pretreatment with a low dose of Daid rather than a high dose significantly enhanced cardiac function and alleviated histopathological deterioration of cardiomyocytes induced by Dox. Daid downregulated the protein levels of Bax, LC3 II, cleaved caspase3 and p-Akt, while up-regulating Bcl-2 and cyclin D1. The Akt agonist SC79 could invalidate all the protective effects of Daid both in vivo and in vitro. Conclusions: Daid reduced autophagy and apoptosis by inhibiting the PI3K/Akt pathway, thereby protecting the hearts from Dox-induced cardiac damage.


Assuntos
Ciclina D1 , Isoflavonas , Ratos , Masculino , Animais , Ciclina D1/metabolismo , Cardiotoxicidade/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos Sprague-Dawley , Proteína X Associada a bcl-2/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais , Linhagem Celular , Doxorrubicina , Miócitos Cardíacos , Apoptose , Isoflavonas/farmacologia , Autofagia , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Estresse Oxidativo
6.
J Adv Res ; 51: 161-179, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-36334887

RESUMO

INTRODUCTION: Meteorin-like hormone (Metrnl) is ubiquitously expressed in skeletal muscle, heart, and adipose with beneficial roles in obesity, insulin resistance, and inflammation. Metrnl is found to protect against cardiac hypertrophy and doxorubicin-induced cardiotoxicity. However, its role in diabetic cardiomyopathy (DCM) is undefined. OBJECTIVES: We aimed to elucidate the potential roles of Metrnl in DCM. METHODS: Gain- andloss-of-function experimentswere utilized to determine the roles of Metrnl in the pathological processes of DCM. RESULTS: We found that plasma Metrnl levels, myocardial Metrnl protein and mRNA expressions were significantly downregulated in both streptozotocin (STZ)-induced (T1D) mice and leptin receptor deficiency (db/db) (T2D) mice. Cardiac-specific overexpression (OE) of Metrnl markedly ameliorated cardiac injury and dysfunction in both T1D and T2D mice. In sharp contrast, specific deletion of Metrnl in the heart had the opposite phenotypes. In parallel, Metrnl OE ameliorated, whereas Metrnl downregulation exacerbated high glucose (HG)-elicited hypertrophy, apoptosis and oxidative damage in primary neonatal rat cardiomyocytes. Antibody-induced blockade of Metrnl eliminated the effects of benefits of Metrnl in vitro and in vivo. Mechanistically, Metrnl activated the autophagy pathway and inhibited the cGAS/STING signaling in a LKB1/AMPK/ULK1-dependent mechanism in cardiomyocytes. Besides, Metrnl-induced ULK1 phosphorylation facilitated the dephosphorylation and mitochondrial translocation of STING where it interacted with tumor necrosis factor receptor-associated factor 2 (TRAF2), a scaffold protein and E3 ubiquitin ligase that was responsible for ubiquitination and degradation of STING, rendering cardiomyocytes sensitive to autophagy activation. CONCLUSION: Thus, Metrnl may be an attractive therapeutic target or regimen for treating DCM.


Assuntos
Diabetes Mellitus Tipo 1 , Diabetes Mellitus Tipo 2 , Cardiomiopatias Diabéticas , Animais , Camundongos , Ratos , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Proteínas Quinases Ativadas por AMP/farmacologia , Autofagia , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/metabolismo , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 1/patologia , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Cardiomiopatias Diabéticas/metabolismo , Cardiomiopatias Diabéticas/patologia , Miócitos Cardíacos , Nucleotidiltransferases/metabolismo , Nucleotidiltransferases/farmacologia
7.
Acta Physiol (Oxf) ; 236(3): e13882, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36039689

RESUMO

AIM: Endogenous dynorphin signaling via kappa opioid receptors (KORs) plays a key role in producing the depressive and aversive consequences of stress. We investigated the behavioral effects of the dynorphin/KOR system in the ventral pallidum (VP) and studied the underlying mechanisms. METHODS: To investigate the effects of dynorphin on the VP, we conducted behavioral experiments after microinjection of drugs or shRNA and brain-slice electrophysiological recordings. Histological tracing and molecular biological experiments were used to identify the distribution of KORs and the possible sources of dynorphin projections to the VP. RESULTS: An elevated dynorphin concentration and increased KOR activity were observed in the VP after acute stress. Infusion of dynorphin-A into the VP produced depressive-like phenotypes including anhedonia and despair and anxiety behaviors, but did not alter locomotor behavior. Mechanistically, dynorphin had an inhibitory effect on VP neurons-reducing their firing rate and inhibiting excitatory transmission-through direct activation of KORs and modulation of downstream G-protein-gated inwardly rectifying potassium (GIRK) channels and high-voltage gated calcium channels (VGCCs). Tracing revealed direct innervation of VP neurons by dynorphin-positive projections; potential sources of these dynorphinergic projections include the nucleus accumbens, amygdala, and hypothalamus. Blockade of dynorphin/KOR signaling in the VP by drugs or viral knock-down of KORs significantly reduced despair behavior in rats. CONCLUSIONS: Endogenous dynorphinergic modulation of the VP plays a critical role in mediating depressive reactions to stress.


Assuntos
Prosencéfalo Basal , Dinorfinas , Animais , Camundongos , Ratos , Prosencéfalo Basal/metabolismo , Canais de Cálcio , Dinorfinas/genética , Dinorfinas/metabolismo , Dinorfinas/farmacologia , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Potássio/farmacologia , Receptores Opioides kappa/genética , Receptores Opioides kappa/metabolismo , RNA Interferente Pequeno , Depressão , Comportamento Animal , Estresse Fisiológico
8.
Front Physiol ; 13: 848867, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35530510

RESUMO

Growing evidence suggests that hypertension is one of the leading causes of cardiovascular morbidity and mortality since uncontrolled high blood pressure increases the risk of myocardial infarction, aortic dissection, hemorrhagic stroke, and chronic kidney disease. Impaired vascular homeostasis plays a critical role in the development of hypertension-induced vascular remodeling. Abnormal behaviors of vascular cells are not only a pathological hallmark of hypertensive vascular remodeling, but also an important pathological basis for maintaining reduced vascular compliance in hypertension. Targeting vascular remodeling represents a novel therapeutic approach in hypertension and its cardiovascular complications. Phytochemicals are emerging as candidates with therapeutic effects on numerous pathologies, including hypertension. An increasing number of studies have found that curcumin, a polyphenolic compound derived from dietary spice turmeric, holds a broad spectrum of pharmacological actions, such as antiplatelet, anticancer, anti-inflammatory, antioxidant, and antiangiogenic effects. Curcumin has been shown to prevent or treat vascular remodeling in hypertensive rodents by modulating various signaling pathways. In the present review, we attempt to focus on the current findings and molecular mechanisms of curcumin in the treatment of hypertensive vascular remodeling. In particular, adverse and inconsistent effects of curcumin, as well as some favorable pharmacokinetics or pharmacodynamics profiles in arterial hypertension will be discussed. Moreover, the recent progress in the preparation of nano-curcumins and their therapeutic potential in hypertension will be briefly recapped. The future research directions and challenges of curcumin in hypertension-related vascular remodeling are also proposed. It is foreseeable that curcumin is likely to be a therapeutic agent for hypertension and vascular remodeling going forwards.

9.
Front Cardiovasc Med ; 8: 719805, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34901202

RESUMO

The increasing incidence of stress-induced cardiomyopathy is due to the complexities of our modern-day lives, which constantly elicit stress responses. Herein, we aimed to explore the therapeutic potential of Amlexanox and Forskolin in promoting the recovery from stress-induced cardiomyopathy. Isoproterenol-induced cardiomyopathy (ICM) models were made, and the following treatment interventions were administered: 5% v/v DMSO as a placebo, Amlexanox (2.5 mg/100 g/day) treatment, Forskolin (0.5 mg/100 g/day), and Amlexanox and Forskolin combination, at their respective aforementioned dosages. The effects of Amlexanox and Forskolin treatment on ICM models were assessed by eletrocardiography and echocardiography. Also, using histological analysis and ELISA, their impact on myocardial architecture and inflammation were ascertained. ICM mice had excessive myocardial fibrosis, hypertrophy, and aggravated LVSDs which were accompanied by massive CD86+ inflammatory cells infiltration. Amlexanox treatment attenuated the myocardial hypertrophy, fibrosis, and inflammation and also slightly improved systolic functions. Meanwhile, forskolin treatment resulted in arrhythmias but significantly enhanced the resolution of myocardial fibrosis and inflammation. Intriguingly, Amlexanox and Forskolin combination demonstrated the most potency at promoting the recovery of the ICM from LVSD by attenuating maladaptive myocardial hypertrophy, fibrosis, and inflammatory responses. Our findings highlight the Amlexanox and Forskolin combination as a potential therapeutic intervention for enhancing cardiac function recovery from stress-induced cardiomyopathy by promoting the resolution of maladaptive cardiac remodeling.

10.
Rev Cardiovasc Med ; 22(4): 1361-1381, 2021 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-34957777

RESUMO

Due to their high prevalence and incidence, diabetes and atherosclerosis are increasingly becoming global public health concerns. Atherosclerosis is one of the leading causes of morbidity and disability in type 1 and/or type 2 diabetes patients. Atherosclerosis risk in diabetic patients is obviously higher than that of non-diabetic individuals. Diabetes-related glycolipid metabolism disorder has been shown to play a central role in atherosclerosis development and progression. Hyperglycemia and dyslipidemia increase the risks for atherosclerosis and plaque necrosis through multiple signaling pathways, such as a prolonged increase in reactive oxygen species (ROS) and inflammatory factors in cardiovascular cells. Notwithstanding the great advances in the understanding of the pathologies of diabetes-accelerated atherosclerosis, the current medical treatments for diabetic atherosclerosis hold undesirable side effects. Therefore, there is an urgent demand to identify novel therapeutic targets or alternative strategies to prevent or treat diabetic atherosclerosis. Burgeoning evidence suggests that plant and herbal medicines are closely linked with healthy benefits for diabetic complications, including diabetic atherosclerosis. In this review, we will overview the utilization of plant and herbal medicines for the treatment of diabetes-accelerated atherosclerosis. Furthermore, the underlying mechanisms of the ethnopharmacological therapeutic potentials against diabetic atherosclerosis are gathered and reviewed. It is foreseeable that the natural constituents from medicinal plants might be a new hope for the treatment of diabetes-accelerated atherosclerosis.


Assuntos
Aterosclerose , Diabetes Mellitus Tipo 2 , Dislipidemias , Plantas Medicinais , Aterosclerose/tratamento farmacológico , Aterosclerose/epidemiologia , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/diagnóstico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Dislipidemias/diagnóstico , Dislipidemias/tratamento farmacológico , Dislipidemias/epidemiologia , Humanos
11.
Front Cell Dev Biol ; 9: 719351, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34631707

RESUMO

Chronic catecholamine stress (CCS) induces the occurrence of cardiomyopathy-pathological cardiac hypertrophy (PCH), which is characterized by left ventricular systolic dysfunction (LVSD). Recently, mounting evidence has implicated myocardial inflammation in the exacerbation of pathological cardiac remodeling. However, there are currently no well-defined treatment interventions or regimes targeted at both the attenuation of maladaptive myocardial hypertrophy and inflammation during CCS to prevent PCH. G protein-coupled receptor kinase 5 (GRK5) and adenylyl cyclases (ACs)-cAMP mediates both cardiac and inflammatory responses. Also, GRK5 and ACs are implicated in stress-induced LVSD. Herein, we aimed at preventing PCH during CCS via modulating adaptive cardiac and inflammatory responses by inhibiting GRK5 and/or stimulating ACs. Isoproterenol-induced cardiomyopathy (ICM) was modeled using 0.5 mg/100 g/day isoproterenol injections for 40 days. Alterations in cardiac and inflammatory responses were assessed from the myocardia. Similarities in the immunogenicity of cardiac troponin I (cTnI) and lipopolysaccharide under CCS were assessed, and Amlexanox (35 µM/ml) and/or Forskolin (10 µM/ml) were then employed in vitro to modulate adaptive inflammatory responses by inhibiting GRK5 or activating ACs-cAMP, respectively. Subsequently, Amlexanox (2.5 mg/100 g/day) and/or Forskolin (0.5 mg/100 g/day) were then translated into in vivo during CCS to modulate adaptive cardiac and inflammatory responses. The effects of Amlexanox and Forskolin on regulating myocardial systolic functions and inflammatory responses during CCS were ascertained afterward. PCH mice had excessive myocardial hypertrophy, fibrosis, and aggravated LVSD, which were accompanied by massive CD68+ inflammatory cell infiltrations. In vitro, Forskolin-AC/cAMP was effective than Amlexanox-GRK5 at downregulating proinflammatory responses during stress; nonetheless, Amlexanox and Forskolin combination demonstrated the most efficacy in modulating adaptive inflammatory responses. Individually, the translated Amlexanox and Forskolin treatment interventions were ineffective at subduing the pathological remodeling and sustaining cardiac function during CCS. However, their combination was potent at preventing LVSD during CCS by attenuating maladaptive myocardial hypertrophy, fibrosis, and inflammatory responses. The treatment intervention attained its potency mainly via Forskolin-ACs/cAMP-mediated modulation of cardiac and inflammatory responses, coupled with Amlexanox inhibition of GRK5 mediated maladaptive cascades. Taken together, our findings highlight the Amlexanox and Forskolin combination as a potential therapeutic intervention for preventing the occurrence of pathological cardiac hypertrophy during chronic stress.

12.
Anal Chim Acta ; 1180: 338881, 2021 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-34538334

RESUMO

Gut ecosystem has profound effects on host physiology and health. Gastrointestinal (GI) symptoms were frequently observed in patients with COVID-19. Compared with other organs, gut antiviral response can result in more complicated immune responses because of the interactions between the gut microbiota and host immunity. However, there are still large knowledge gaps in the impact of COVID-19 on gut molecular profiles and commensal microbiome, hindering our comprehensive understanding of the pathogenesis of SARS-CoV-2 and the treatment of COVID-19. We performed longitudinal stool multi-omics profiling to systemically investigate the molecular phenomics alterations of gut ecosystem in COVID-19. Gut proteomes of COVID-19 were characterized by disturbed immune, proteolysis and redox homeostasis. The expression and glycosylation of proteins involved in neutrophil degranulation and migration were suppressed, while those of proteases were upregulated. The variable domains of Ig heavy chains were downregulated and the overall glycosylation of IgA heavy chain constant regions, IgGFc-binding protein, and J chain were suppressed with glycan-specific variations. There was a reduction of beneficial gut bacteria and an enrichment of bacteria derived deleterious metabolites potentially associated with multiple types of diseases (such as ethyl glucuronide). The reduction of Ig heave chain variable domains may contribute to the increase of some Bacteroidetes species. Many bacteria ceramide lipids with a C17-sphingoid based were downregulated in COVID-19. In many cases, the gut phenome did not restore two months after symptom onset. Our study indicates widely disturbed gut molecular profiles which may play a role in the development of symptoms in COVID-19. Our findings also emphasis the need for ongoing investigation of the long-term gut molecular and microbial alterations during COVID-19 recovery process. Considering the gut ecosystem as a potential target could offer a valuable approach in managing the disease.


Assuntos
COVID-19 , Microbioma Gastrointestinal , Ecossistema , Fezes , Humanos , SARS-CoV-2
13.
Gene ; 780: 145532, 2021 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-33631244

RESUMO

As one of the most common complications of diabetes, nephropathy develops in approximately 40% of diabetic individuals. Although end stage kidney disease is known as one of the most consequences of diabetic nephropathy, the majority of diabetic individuals might die from cardiovascular diseases and infections before renal replacement treatment. Moreover, the routine medical treatments for diabetes hold undesirable side effects. The explosive prevalence of diabetes urges clinicians and scientists to investigate the complementary or alternative therapies. Phytochemicals are emerging as alternatives with a wide range of therapeutic effects on various pathologies, including diabetic kidney disease. Of those phytochemicals, resveratrol, a natural polyphenolic stilbene, has been found to exert a broad spectrum of health benefits via various signaling molecules. In particular, resveratrol has gained a great deal of attention because of its anti-oxidative, anti-inflammatory, anti-diabetic, anti-obesity, cardiovascular-protective, and anti-tumor properties. In the renal system, emerging evidence shows that resveratrol has already been used to ameliorate chronic or acute kidney injury. This review critically summarizes the current findings and molecular mechanisms of resveratrol in diabetic renal damage. In addition, we will discuss the adverse and inconsistent effects of resveratrol in diabetic nephropathy. Although there is increasing evidence that resveratrol affords great potential in diabetic nephropathy therapy, these results should be treated with caution before its clinical translation. In addition, the unfavorable pharmacokinetics and/or pharmacodynamics profiles, such as poor bioavailability, may limit its extensive clinical applications. It is clear that further research is needed to unravel these limitations and improve its efficacy against diabetic nephropathy. Increasing investigation of resveratrol in diabetic kidney disease will not only help us better understand its pharmacological actions, but also provide novel potential targets for therapeutic intervention.


Assuntos
Nefropatias Diabéticas/tratamento farmacológico , Resveratrol/farmacocinética , Resveratrol/uso terapêutico , Animais , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/patologia , Humanos
14.
Bioorg Med Chem Lett ; 32: 127717, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33253879

RESUMO

A hallmark of cancer is the evasion of apoptosis. Myeloid cell leukemia-1 (MCL-1) is an anti-apoptotic member of the B-cell lymphoma-2 (BCL-2) family of proteins that regulates the mitochondrial apoptosis pathway. Overexpression of MCL-1 contributes to oncogenesis and confers resistance to cancer treatments. Protein-protein interactions (PPI) are constitutive of the dynamic interplay between the pro- and anti-apoptotic proteins of the BCL-2 family, which is integral to controlling the apoptotic threshold of cells. Therapeutic intervention by small molecule BH3 mimetics to pharmacologically target the PPI and antagonize MCL-1 has made significant progress in recent years in oncology with multiple candidates entering clinical trials. This digest accounts the state-of-art MCL-1 inhibitors with emphasis on their discovery medicinal chemistry, highlighted in structure-based drug design (SBDD) and biological evaluations.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Bibliotecas de Moléculas Pequenas/química , Apoptose/efeitos dos fármacos , Proteínas Reguladoras de Apoptose/química , Desenho de Fármacos , Humanos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Proteína de Sequência 1 de Leucemia de Células Mieloides/antagonistas & inibidores , Mapas de Interação de Proteínas/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/metabolismo , Bibliotecas de Moléculas Pequenas/farmacologia , Relação Estrutura-Atividade
15.
J Microsc ; 282(1): 73-83, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33196102

RESUMO

Secondary Ion Mass Spectrometry is an important technique for the study of the composition of a wide range of materials because of the exceptionally high sensitivity that allows the study of trace elements and the ability to distinguish isotopes that can be used as markers for reactions and transport processes. However, when studying nuclear materials, it is often necessary to analyse highly radioactive samples, and only rather few SIMS facilities are available in active environments. In this paper, we present a methodology using focussed ion beam milling to prepare samples from radioactive specimens that are sufficiently large to undertake SIMS mapping experiments over microstructurally significant regions, but with overall activities small enough to be readily transported and analysed by a SIMS instrument in a normal laboratory environment. Radioactive samples prepared using this methodology can also be used for correlative SIMS analysis with other analytical microscopies. SIMS results showing the distributions of deuterium in oxides on in-reactor corroded zirconium alloys are presented to demonstrate the potential of this sample preparation technique.

16.
PeerJ ; 8: e8966, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32296615

RESUMO

Metagenome assembly from short next-generation sequencing data is a challenging process due to its large scale and computational complexity. Clustering short reads by species before assembly offers a unique opportunity for parallel downstream assembly of genomes with individualized optimization. However, current read clustering methods suffer either false negative (under-clustering) or false positive (over-clustering) problems. Here we extended our previous read clustering software, SpaRC, by exploiting statistics derived from multiple samples in a dataset to reduce the under-clustering problem. Using synthetic and real-world datasets we demonstrated that this method has the potential to cluster almost all of the short reads from genomes with sufficient sequencing coverage. The improved read clustering in turn leads to improved downstream genome assembly quality.

17.
Annu Rev Anal Chem (Palo Alto Calif) ; 13(1): 273-292, 2020 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-32040924

RESUMO

High-resolution SIMS analysis can be used to explore a wide range of problems in material science and engineering materials, especially when chemical imaging with good spatial resolution (50-100 nm) can be combined with efficient detection of light elements and precise separation of isotopes and isobaric species. Here, applications of the NanoSIMS instrument in the analysis of inorganic materials are reviewed, focusing on areas of current interest in the development of new materials and degradation mechanisms under service conditions. We have chosen examples illustrating NanoSIMS analysis of grain boundary segregation, chemical processes in cracking, and corrosion of nuclear components. An area where NanoSIMS analysis shows potential is in the localization of light elements, in particular, hydrogen and deuterium. Hydrogen embrittlement is a serious problem for industries where safety is critical, including aerospace, nuclear, and oil/gas, so it is imperative to know where in the microstructure hydrogen is located. By charging the metal with deuterium, to avoid uncertainty in the origin of the hydrogen, the microstructural features that can trap hydrogenic species, such as precipitates and grain and phase boundaries, can be determined by NanoSIMS analysis on a microstructurally relevant scale.

18.
Eur J Pharmacol ; 852: 90-98, 2019 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-30851272

RESUMO

Vascular calcification (VC) is a critical feature of chronic kidney disease (CKD), diabetes, hypertension, and atherosclerosis. Death-associated protein kinase 3 (DAPK3) is involved in vascular remodeling in hypertension. However, it remains to be clarified whether DAPK3 controls vascular smooth muscle cell (VSMC) phenotypic transition into an osteogenic cell phenotype, which is an important process for VC. In vivo VC was induced in rats by vitamin D3 and nicotine. VSMCs were incubated with calcifying media containing ß-glycerophosphate and Ca2+ to induce VC in vitro. Herein, we demonstrated increased expression of DAPK3 in the aortas of VC rats and VSMCs cultured in calcifying media. Knockdown of DAPK3 significantly inhibited calcifying media-induced VSMC mineralization and retarded the phenotypic transformation of VSMCs into osteogenic cells. Silencing of DAPK3 suppressed endoplasmic reticulum stress (ERS) related protein expressions, but upregulated the phosphorylation level of AMP-activated protein kinase (AMPK) in calcified VSMCs. Moreover, pretreatment with AMPK inhibitor Compound C abolished DAPK3 shRNA-mediated inhibition of ERS in VSMCs. In vivo, DAPK inhibitor significantly prevented calcium deposition in the aortas of VC rats. The present results revealed that DAPK3 modulated VSMC calcification through AMPK-mediated ERS signaling.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Proteínas Quinases Associadas com Morte Celular/deficiência , Proteínas Quinases Associadas com Morte Celular/genética , Estresse do Retículo Endoplasmático/genética , Técnicas de Silenciamento de Genes , Calcificação Vascular/patologia , Animais , Proteínas Quinases Associadas com Morte Celular/antagonistas & inibidores , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Masculino , Músculo Liso Vascular/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Calcificação Vascular/genética , Calcificação Vascular/metabolismo
19.
ACS Appl Mater Interfaces ; 11(1): 603-612, 2019 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-30521307

RESUMO

Directional, micron-scale honeycomb pores in Li-ion battery electrodes were fabricated using a layer-by-layer, self-assembly approach based on spray-printing of carbon nanofibers. By controlling the drying behavior of each printed electrode layer through optimization of (i) the volume ratio of fugitive bisolvent carriers in the suspension and (ii) the substrate temperature during printing, self-assembled, honeycomb pore channels through the electrode were created spontaneously and reliably on current collector areas larger than 20 cm × 15 cm. The honeycomb pore structure promoted efficient Li-ion dynamics at high charge/discharge current densities. Incorporating an optimum fraction (2.5 wt %) of high-energy-density Si particulate into the honeycomb electrodes provided a 4-fold increase in deliverable discharge capacity at 8000 mA/g. The spray-printed, honeycomb pore electrodes were then investigated as negative electrodes coupled with similar spray-printed LiFePO4 positive electrodes in a full Li-ion cell configuration, providing an approximately 50% improvement in rate capacity retention over half-cell configurations of identical electrodes at 4000 mA/g.

20.
J Am Chem Soc ; 140(42): 13970-13975, 2018 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-30265807

RESUMO

Pressure quenching of optical emission largely limits the potential application of many materials in optical pressure-sensing devices, since emission intensity is crucially connected to performance. Boosting visible-light emission at high pressure is, therefore, an important goal. Here, we demonstrate that the emission of CdSe nanocrystals (NCs) can be enhanced by more than an order of magnitude by compression. The brightest emission can be achieved at pressures corresponding to the phase transitions in different sized CdSe NCs. Very bright blue emission can be obtained by exploiting the increase in band gap with increasing pressure. First-principles calculations indicate that the interaction between the capping oleic acid (OA) layer and the CdSe core is strengthened with increased Hirshfeld charge at high pressure. The effective surface reconstruction associated with the removal of surface-related trap states is highly responsible for the pressure-induced emission enhancement of these CdSe NCs. These findings pave the way for designing a stress nanogauge with easy optical readout and provide a route for tuning bright-fluorescence imaging in response to an externally applied pressure.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...