Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Int J Nanomedicine ; 18: 2087-2107, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37122500

RESUMO

Purpose: The present study aimed to construct a co-loading platform encapsulating curcumin and paclitaxel at ratios of 2:1-80:1 (w/w) designated "CU-PTX-LNP" and explored the synergistic effects of CU-PTX at different composite proportions on liver cancer cells using the combination index (CI) method. Methods: The CU lipid nanoplatform (CU-LNP) formulation was optimized via single-factor and orthogonal experiments. Various concentrations of PTX were added to the optimal formulation of CU-LNP to generate CU-PTX-LNP and the nanoplatform characterized via differential scanning calorimetry (DSC), transmission electron microscope (TEM), X-ray diffraction (XRD), zeta potential, polydispersity index (PDI), and size analyses. The cumulative release, stability, and cytotoxicity of CU-PTX-LNP in LO2, HepG2, and SMMC-7221 cells were assessed in vitro, followed by safety investigation and pharmacokinetic studies in vivo. The anti-tumor activity of CU-PTX-LNP was also evaluated using nude mice. Results: CU-PTX-LNP formulations containing CU:PTX at a range of proportions (2:1-80:1; w/w) appeared as uniformly dispersed nanosized spherical particles with high entrapment efficiency (EE> 90%), sustained release and long-lasting stability. Data from in vitro cytotoxicity assays showed a decrease in the IC50 value of PTX of CU-PTX-LNP (by 5.47-332.7 times in HepG2 and 4.29-143.21 times in SMMC-7221 cells) compared to free PTX. In vivo, CU-PTX-LNP displayed excellent biosafety, significant anti-tumor benefits and enhanced pharmacokinetic behavior with longer mean residence time (MRT(0-t); CU: 4.31-fold, PTX: 4.61-fold) and half-life (t1/2z; CU: 1.83-fold, PTX: 2.28-fold) relative to free drugs. Conclusion: The newly designed CU-PTX-LNP platform may serve as a viable technological support system for the successful production of CU-PTX composite preparations.


Assuntos
Carcinoma Hepatocelular , Curcumina , Neoplasias Hepáticas , Animais , Camundongos , Carcinoma Hepatocelular/tratamento farmacológico , Curcumina/farmacologia , Lipídeos/química , Neoplasias Hepáticas/tratamento farmacológico , Camundongos Nus , Paclitaxel/farmacocinética
4.
Mol Biol Rep ; 50(4): 3217-3228, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36705791

RESUMO

BACKGROUND: Osteoblast phenotypic transition in vascular smooth muscle cells (VSMCs) has been unveiled as a common cause of vascular calcification (VC). Krüppel-Associated Box (KRAB)-Associated Protein 1(KAP1) is a transcriptional corepressor that modulates various intracellular pathological processes from gene expression to DNA repair to signal transduction. However, the function and mechanism of KAP1 on the osteoblastic differentiation of VSMCs have not been evaluated yet. METHODS AND RESULTS: We demonstrate that the expression of KAP1 in VSMCs is significantly enhanced in vivo and in vitro calcification models. Downregulating the expression of KAP1 suppresses the osteoblast phenotypic transition of VSMCs, which is indicated by a decrease in the expression of osteoblast marker collagenase type I (COL I) and an increase in the expression of VSMC marker α-smooth muscle actin (α-SMA). Conversely, exogenous overexpression of KAP1 could promote osteoblast phenotypic transition of VSMCs. Moreover, KAP1 upregulated the expression of RUNX family transcription factor 2 (Runx2), an inducer of osteoblast that positively regulates many osteoblast-related genes, such as COL I. Evaluation of the potential mechanism demonstrated that KAP1 promoted osteoblast phenotypic transition of VSMCs by activating the extracellular regulated protein kinases (ERK) signaling pathway, which could activate Runx2. In support of this finding, KAP1-induced cell osteoblast phenotypic transition is abolished by treatment with PD0325901, a specific ERK inhibitor. CONCLUSIONS: The present study suggested that KAP1 participated in the osteoblast differentiation of VSMCs via the ERK/Runx2 cascade and served as a potential diagnostics and therapeutics target for vascular calcification.


Assuntos
Osteogênese , Calcificação Vascular , Humanos , Diferenciação Celular , Células Cultivadas , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Osteogênese/genética , Transdução de Sinais , Calcificação Vascular/metabolismo , Proteínas do Citoesqueleto/metabolismo , Sistema de Sinalização das MAP Quinases
5.
Int J Nanomedicine ; 15: 9799-9821, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33324053

RESUMO

Curcumin (CUR), as a traditional Chinese medicine monomer extracted from the rhizomes of some plants in Ginkgo and Araceae, has shown a wide range of therapeutic and pharmacological activities such as anti-tumor, anti-inflammatory, anti-oxidation, anti-virus, anti-liver fibrosis, anti-atherosclerosis, and anti-Alzheimer's disease. However, some issues significantly affect its biological activity, such as low aqueous solubility, physico-chemical instability, poor bioavailability, and low targeting efficacy. In order to further improve its curative effect, numerous efficient drug delivery systems have been carried out. Among them, physicochemical targeting preparations could improve the properties, targeting ability, and biological activity of CUR. Therefore, in this review, CUR carrier systems are discussed that are driven by physicochemical characteristics of the microenvironment (eg, pH variation of tumorous tissues), affected by external influences like magnetic fields and vehicles formulated with thermo-sensitive materials.


Assuntos
Fenômenos Químicos , Curcumina/química , Portadores de Fármacos/química , Curcumina/farmacologia , Humanos , Concentração de Íons de Hidrogênio , Campos Magnéticos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...