Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Nat Commun ; 14(1): 4096, 2023 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-37433799

RESUMO

Bioenergy with carbon capture and storage (BECCS) is considered to be a key technology for removing carbon dioxide from the atmosphere. However, large-scale bioenergy crop cultivation results in land cover changes and activates biophysical effects on climate, with earth's water recycling altered and energy budget re-adjusted. Here, we use a coupled atmosphere-land model with explicit representations of high-transpiration woody (i.e., eucalypt) and low-transpiration herbaceous (i.e., switchgrass) bioenergy crops to investigate the range of impact of large-scale rainfed bioenergy crop cultivation on the global water cycle and atmospheric water recycling. We find that global land precipitation increases under BECCS scenarios, due to enhanced evapotranspiration and inland moisture advection. Despite enhanced evapotranspiration, soil moisture decreases only slightly, due to increased precipitation and reduced runoff. Our results indicate that, at the global scale, the water consumption by bioenergy crop growth would be partially compensated by atmospheric feedbacks. Thus, to support more effective climate mitigation policies, a more comprehensive assessment, including the biophysical effects of bioenergy cultivation, is highly recommended.

3.
Nat Food ; 4(5): 416-426, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37142747

RESUMO

Extreme climate events constitute a major risk to global food production. Among these, extreme rainfall is often dismissed from historical analyses and future projections, the impacts and mechanisms of which remain poorly understood. Here we used long-term nationwide observations and multi-level rainfall manipulative experiments to explore the magnitude and mechanisms of extreme rainfall impacts on rice yield in China. We find that rice yield reductions due to extreme rainfall were comparable to those induced by extreme heat over the last two decades, reaching 7.6 ± 0.9% (one standard error) according to nationwide observations and 8.1 ± 1.1% according to the crop model incorporating the mechanisms revealed from manipulative experiments. Extreme rainfall reduces rice yield mainly by limiting nitrogen availability for tillering that lowers per-area effective panicles and by exerting physical disturbance on pollination that declines per-panicle filled grains. Considering these mechanisms, we projected ~8% additional yield reduction due to extreme rainfall under warmer climate by the end of the century. These findings demonstrate that it is critical to account for extreme rainfall in food security assessments.


Assuntos
Oryza , Clima , China , Produtos Agrícolas , Mudança Climática
4.
Nat Commun ; 14(1): 32, 2023 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-36596797

RESUMO

Despite knowledge of the presence of the Tibetan Plateau (TP) in reorganizing large-scale atmospheric circulation, it remains unclear how surface albedo darkening over TP will impact local glaciers and remote Asian monsoon systems. Here, we use a coupled land-atmosphere global climate model and a glacier model to address these questions. Under a high-emission scenario, TP surface albedo darkening will increase local temperature by 0.24 K by the end of this century. This warming will strengthen the elevated heat pump of TP, increasing South Asian monsoon precipitation while exacerbating the current "South Flood-North Drought" pattern over East Asia. The albedo darkening-induced climate change also leads to an accompanying TP glacier volume loss of 6.9%, which further increases to 25.2% at the equilibrium, with a notable loss in western TP. Our findings emphasize the importance of land-surface change responses in projecting future water resource availability, with important implications for water management policies.


Assuntos
Atmosfera , Água , Tibet , Temperatura , Ásia Oriental
6.
Nat Commun ; 13(1): 3925, 2022 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-35798743

RESUMO

The seasonal greening of Northern Hemisphere (NH) ecosystems, due to extended growing periods and enhanced photosynthetic activity, could modify near-surface warming by perturbing land-atmosphere energy exchanges, yet this biophysical control on warming seasonality is underexplored. By performing experiments with a coupled land-atmosphere model, here we show that summer greening effectively dampens NH warming by -0.15 ± 0.03 °C for 1982-2014 due to enhanced evapotranspiration. However, greening generates weak temperature changes in spring (+0.02 ± 0.06 °C) and autumn (-0.05 ± 0.05 °C), because the evaporative cooling is counterbalanced by radiative warming from albedo and water vapor feedbacks. The dwindling evaporative cooling towards cool seasons is also supported by state-of-the-art Earth system models. Moreover, greening-triggered energy imbalance is propagated forward by atmospheric circulation to subsequent seasons and causes sizable time-lagged climate effects. Overall, greening makes winter warmer and summer cooler, attenuating the seasonal amplitude of NH temperature. These findings demonstrate complex tradeoffs and linkages of vegetation-climate feedbacks among seasons.


Assuntos
Clima , Ecossistema , Atmosfera , Mudança Climática , Estações do Ano , Temperatura
7.
Sci Rep ; 12(1): 8466, 2022 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-35589756

RESUMO

Between the Last Glacial Maximum and the mid-Holocene, the Mediterranean Sea experienced major hydrological changes. The deposition of the last sapropel, S1, during the Early Holocene is a consequence of these changes. In order to cause anoxia in the Eastern Mediterranean Sea (EMS) bottom water, a long preconditioning period of a few thousand years would need to occur throughout the deglaciation prior to S1. It is generally believed that this freshwater was of North Atlantic origin, later supplemented by the African Humid period (AHP). Here, we investigate another potentially important source of freshwater to the EMS: the Fennoscandian ice sheet (FIS) meltwater, running into the Caspian and Black Seas. A few scenarios of continental hydrologic perturbation have been developed to drive a high-resolution Mediterranean Sea general circulation model. We demonstrate that, during the last deglaciation, FIS meltwater flowing into the Black Sea reduced surface salinity and ventilation over the main convection areas in the EMS. By including continental hydrological changes, a more consistent framework is produced to characterize the hydrology of the Mediterranean Sea during the last deglaciation and the Early Holocene.


Assuntos
Água Doce , Camada de Gelo , Congelamento , Mar Mediterrâneo , Água do Mar
8.
Nat Food ; 3(1): 57-65, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-37118481

RESUMO

Crop pests and diseases (CPDs) are emerging threats to global food security, but trends in the occurrence of pests and diseases remain largely unknown due to the lack of observations for major crop producers. Here, on the basis of a unique historical dataset with more than 5,500 statistical records, we found an increased occurrence of CPDs in every province of China, with the national average rate of CPD occurrence increasing by a factor of four (from 53% to 218%) during 1970-2016. Historical climate change is responsible for more than one-fifth of the observed increment of CPD occurrence (22% ± 17%), ranging from 2% to 79% in different provinces. Among the climatic factors considered, warmer nighttime temperatures contribute most to the increasing occurrence of CPDs (11% ± 9%). Projections of future CPDs show that at the end of this century, climate change will lead to an increase in CPD occurrence by 243% ± 110% under a low-emissions scenario (SSP126) and 460% ± 213% under a high-emissions scenario (SSP585), with the magnitude largely dependent on the impacts of warmer nighttime temperatures and decreasing frost days. This observation-based evidence highlights the urgent need to accurately account for the increasing risk of CPDs in mitigating the impacts of climate change on food production.

9.
Nat Commun ; 12(1): 7255, 2021 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-34903764

RESUMO

Bioenergy crop with carbon capture and storage (BECCS) is a key negative emission technology to meet carbon neutrality. However, the biophysical effects of widespread bioenergy crop cultivation on temperature remain unclear. Here, using a coupled atmosphere-land model with an explicit representation of lignocellulosic bioenergy crops, we find that after 50 years of large-scale bioenergy crop cultivation following plausible scenarios, global air temperature decreases by 0.03~0.08 °C, with strong regional contrasts and interannual variability. Over the cultivated regions, woody crops induce stronger cooling effects than herbaceous crops due to larger evapotranspiration rates and smaller aerodynamic resistance. At the continental scale, air temperature changes are not linearly proportional to the cultivation area. Sensitivity tests show that the temperature change is robust for eucalypt but more uncertain for switchgrass among different cultivation maps. Our study calls for new metrics to take the biophysical effects into account when assessing the climate mitigation capacity of BECCS.


Assuntos
Mudança Climática , Produtos Agrícolas/fisiologia , Sequestro de Carbono , Produtos Agrícolas/classificação , Produtos Agrícolas/crescimento & desenvolvimento , Transferência de Energia , Modelos Teóricos , Análise Espacial , Temperatura
10.
Earths Future ; 9(7): e2021EF002035, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34435073

RESUMO

Aerosols have a dimming and cooling effect and change hydrological regimes, thus affecting carbon fluxes, which are sensitive to climate. Aerosols also scatter sunlight, which increases the fraction of diffuse radiation, increasing photosynthesis. There remains no clear conclusion whether the impact of aerosols on land carbon fluxes is larger through diffuse radiation change than through changes in other climate variables. In this study, we quantified the overall physical impacts of anthropogenic aerosols on land C fluxes and explored the contribution from each factor using a set of factorial simulations driven by climate and aerosol data from the IPSL-CM6A-LR experiments during 1850-2014. A newly developed land surface model which distinguishes diffuse and direct radiation in canopy radiation transmission, ORCHIDEE_DF, was used. Specifically, a subgrid scheme was developed to distinguish the cloudy and clear sky conditions. We found that anthropogenic aerosol emissions since 1850 cumulatively enhanced the land C sink by 22.6 PgC. Seventy-eight percent of this C sink enhancement is contributed by aerosol-induced increase in the diffuse radiation fraction, much larger than the effect of the aerosol-induced dimming. The cooling of anthropogenic aerosols has different impacts in different latitudes but overall increases the global land C sink. The dominant role of diffuse radiation changes found in this study implies that future aerosol emissions may have a much stronger impacts on the C cycle through changing radiation quality than through changing climate alone. Earth system models need to consider the diffuse radiation fertilization effect to better evaluate the impacts of climate change mitigation scenarios.

11.
Nat Commun ; 12(1): 1235, 2021 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-33623028

RESUMO

Irrigation is the largest sector of human water use and an important option for increasing crop production and reducing drought impacts. However, the potential for irrigation to contribute to global crop yields remains uncertain. Here, we quantify this contribution for wheat and maize at global scale by developing a Bayesian framework integrating empirical estimates and gridded global crop models on new maps of the relative difference between attainable rainfed and irrigated yield (ΔY). At global scale, ΔY is 34 ± 9% for wheat and 22 ± 13% for maize, with large spatial differences driven more by patterns of precipitation than that of evaporative demand. Comparing irrigation demands with renewable water supply, we find 30-47% of contemporary rainfed agriculture of wheat and maize cannot achieve yield gap closure utilizing current river discharge, unless more water diversion projects are set in place, putting into question the potential of irrigation to mitigate climate change impacts.

12.
Sci Bull (Beijing) ; 66(24): 2528-2537, 2021 12 30.
Artigo em Inglês | MEDLINE | ID: mdl-36654212

RESUMO

This paper presents projections of climate extremes over China under global warming of 1.5, 2, and 3 °C above pre-industrial (1861-1900), based on the latest Coupled Model Intercomparison Project phase 6 (CMIP6) simulations. Results are compared with what produced by the precedent phase of the project, CMIP5. Model evaluation for the reference period (1985-2005) indicates that CMIP6 models outperform their predecessors in CMIP5, especially in simulating precipitation extremes. Areal averages for changes of most indices are found larger in CMIP6 than in CMIP5. The emblematic annual mean temperature, when averaged over the whole of China in CMIP6, increases by 1.49, 2.21, and 3.53 °C (relative to 1985-2005) for 1.5, 2, and 3 °C above-preindustrial global warming levels, while the counterpart in CMIP5 is 1.20, 1.93 and 3.39 °C respectively. Similarly, total precipitation increases by 5.3%, 8.6%, and 16.3% in CMIP6 and by 4.4%, 7.0% and 12.8% in CMIP5, respectively. The spatial distribution of changes for extreme indices is generally consistent in both CMIP5 and CMIP6, but with significantly higher increases in CMIP6 over Northeast and Northwest China for the hottest day temperature, and South China for the coldest night temperature. In the south bank of the Yangtze River, and most regions around 40°N, CMIP6 shows higher increases for both total precipitation and heavy precipitation. The projected difference between CMIP6 and CMIP5 is mainly attributable to the physical upgrading of climate models and largely independent from their emission scenarios.


Assuntos
Mudança Climática , Modelos Teóricos , Clima , Aquecimento Global , China
13.
Sci Adv ; 6(1): eaax0255, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31922002

RESUMO

Earlier vegetation greening under climate change raises evapotranspiration and thus lowers spring soil moisture, yet the extent and magnitude of this water deficit persistence into the following summer remain elusive. We provide observational evidence that increased foliage cover over the Northern Hemisphere, during 1982-2011, triggers an additional soil moisture deficit that is further carried over into summer. Climate model simulations independently support this and attribute the driving process to be larger increases in evapotranspiration than in precipitation. This extra soil drying is projected to amplify the frequency and intensity of summer heatwaves. Most feedbacks operate locally, except for a notable teleconnection where extra moisture transpired over Europe is transported to central Siberia. Model results illustrate that this teleconnection offsets Siberian soil moisture losses from local spring greening. Our results highlight that climate change adaptation planning must account for the extra summer water and heatwave stress inherited from warming-induced earlier greening.


Assuntos
Secas , Ecossistema , Desenvolvimento Vegetal , Solo/química , Mudança Climática , Estações do Ano , Água/química
14.
Natl Sci Rev ; 7(5): 897-912, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-34692111

RESUMO

Afforestation in China provides carbon sequestration and prevents soil erosion, but its remote impacts on climate in other regions via the coupling of forest energy fluxes with atmospheric circulation are largely unknown. Here, we prescribe inventory-based forest cover change and satellite-observed leaf area index from 1982 to 2011 in a coupled land-atmosphere model to simulate their biophysical climate effects. Both local and global surface air temperatures show a seasonal contrast in response to past vegetation cover expansion over China: a phenomenon we primarily attribute to a variation of seasonality of vegetation greening. A large cooling in spring results in concurrent decreases in geopotential height over China and zonal wind over Mongolia, causing a dipole structure in the upper troposphere over the Arctic. This accounts for ∼58% of simulated spring warming over the Russian Arctic and ∼61% of simulated spring cooling over the Canadian Artic. Our results imply that spring vegetation dynamics in China may affect climate in northern high latitudes.

15.
Environ Pollut ; 258: 113728, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31877468

RESUMO

The emission and deposition of global atmospheric phosphorus (P) have long been considered unbalanced, and primary biogenic aerosol particles (PBAP) and phosphine (PH3) are considered to be the only atmospheric P sources from the ecosystem. In this work, we found and quantified volatile organic phosphorus (VOP) emissions from plants unaccounted for in previous studies. In a greenhouse in which lemons were cultivated, the atmospheric total phosphorus (TP) concentration of particulate matter (PM) was 41.8% higher than that in a greenhouse containing only soil, and the proportion of organic phosphorus (OP) in TP was doubled. 31P nuclear magnetic resonance tests (31P-NMR) of PM showed that phosphate monoesters were the main components contributed by plants in both the greenhouse and at an outside observation site. Atmospheric gaseous P was directly measured to be 1-2 orders of magnitude lower than P in PM but appeared to double during plant growing seasons relative to other months. Bag-sampling and gas chromatography mass spectrometry (GCMS) tests showed that the gaseous P emitted by plants in the greenhouse was triethyl phosphate. VOP might be an important component of atmospheric P that has been underestimated in previous studies.


Assuntos
Material Particulado/análise , Fósforo/análise , Plantas/metabolismo , Solo/química
16.
Sci Rep ; 9(1): 14982, 2019 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-31628358

RESUMO

The 1.5 °C global warming target proposed by the Paris Agreement has raised worldwide attention and inspired numerous studies to assess corresponding climate changes for different regions of the world. But CMIP5 models based on Representative Concentration Pathways (RCP) are 'transient simulations' and cannot reflect the response of climate warming stabilized at 1.5 °C. The current work presents an assessment of extreme temperature changes in China with simulations from 'Half a degree Additional warming, Prognosis and Projected Impacts' (HAPPI) project specially conceived for global warming levels stabilized at 1.5 °C and 2.0 °C. When global warming stabilizes at 1.5 °C/2.0 °C, the areal-mean temperature for whole China increases by about 0.94 °C/1.59 °C (relative to present period, taken from 2006-2015). Notable increase regions are mainly found in Northwest and Northeast-North China, but warm spell duration increases mostly in Southeast China. The effect of the additional 0.5 °C warming is particularly investigated and compared between the transient and stabilized simulations. Changes of mean and extreme temperature are larger in transient simulations than in stabilized simulations. The uncertainty range is also narrower in stabilized simulations. Under stabilized global warming scenario, extreme hot event with return period of 100 years in the present climate becomes event occurring every 4.79 (1.5 °C warming level) and 1.56 years (2.0 °C warming level), extreme cold event with return period of 10 years becomes event occurring every 67 years under 1.5 °C warming and is unlikely to occur under 2.0 °C warming. For geographic distribution, the occurrence probabilities of extreme (hot and cold) events mainly change in the Tibetan Plateau, and the extreme cold events also change in Northeast and Southeast China.

17.
Sci Adv ; 4(5): eaar4182, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29750196

RESUMO

China has experienced substantial changes in vegetation cover, with a 10% increase in the leaf area index and an ~41.5 million-hectare increase in forest area since the 1980s. Earlier studies have suggested that increases in leaf area and tree cover have led to a decline in soil moisture and runoff due to increased evapotranspiration (ET), especially in dry regions of China. However, those studies often ignored precipitation responses to vegetation increases, which could offset some of the negative impact on soil moisture by increased ET. We investigated 30-year vegetation impacts on regional hydrology by allowing for vegetation-induced changes in precipitation using a coupled land-atmosphere global climate model, with a higher spatial resolution zoomed grid over China. We found high spatial heterogeneity in the vegetation impacts on key hydrological variables across China. In North and Southeast China, the increased precipitation from vegetation greening and the increased forest area, although statistically insignificant, supplied enough water to cancel out enhanced ET, resulting in weak impact on soil moisture. In Southwest China, however, the increase in vegetation cover significantly reduced soil moisture while precipitation was suppressed by the weakened summer monsoon. In Northeast China, the only area where forest cover declined, soil moisture was significantly reduced, by -8.1 mm decade-1, likely because of an intensified anticyclonic circulation anomaly during summer. These results suggest that offline model simulations can overestimate the increase of soil dryness in response to afforestation in North China, if vegetation feedbacks lead to increased precipitation like in our study.


Assuntos
Ecossistema , Meio Ambiente , Hidrologia , China , Geografia
18.
Sci Bull (Beijing) ; 63(4): 228-234, 2018 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36659011

RESUMO

To avoid dangerous climate change impact, the Paris Agreement sets out two ambitious goals: to limit the global warming to be well below 2 °C and to pursue effort for the global warming to be below 1.5 °C above the pre-industrial level. As climate change risks may be region-dependent, changes in magnitude and probability of extreme precipitation over China are investigated under those two global warming levels based on simulations from the Coupled Model Inter-Comparison Projects Phase 5. The focus is on the added changes due to the additional half a degree warming from 1.5 °C to 2 °C. Results show that regional average changes in the magnitude do not depend on the return periods with a relative increase around 7% and 11% at the 1.5 °C and 2 °C global warming levels, respectively. The additional half a degree global warming adds an additional increase in the magnitude by nearly 4%. The regional average changes in term of occurrence probabilities show dependence on the return periods, with rarer events (longer return periods) having larger increase of risk. For the 100-year historical event, the probability is projected to increase by a factor of 1.6 and 2.4 at the 1.5 °C and 2 °C global warming levels, respectively. The projected changes in extreme precipitation are independent of the RCP scenarios.

19.
Nature ; 531(7594): 357-61, 2016 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-26983540

RESUMO

Knowledge of the contribution that individual countries have made to global radiative forcing is important to the implementation of the agreement on "common but differentiated responsibilities" reached by the United Nations Framework Convention on Climate Change. Over the past three decades, China has experienced rapid economic development, accompanied by increased emission of greenhouse gases, ozone precursors and aerosols, but the magnitude of the associated radiative forcing has remained unclear. Here we use a global coupled biogeochemistry-climate model and a chemistry and transport model to quantify China's present-day contribution to global radiative forcing due to well-mixed greenhouse gases, short-lived atmospheric climate forcers and land-use-induced regional surface albedo changes. We find that China contributes 10% ± 4% of the current global radiative forcing. China's relative contribution to the positive (warming) component of global radiative forcing, mainly induced by well-mixed greenhouse gases and black carbon aerosols, is 12% ± 2%. Its relative contribution to the negative (cooling) component is 15% ± 6%, dominated by the effect of sulfate and nitrate aerosols. China's strongest contributions are 0.16 ± 0.02 watts per square metre for CO2 from fossil fuel burning, 0.13 ± 0.05 watts per square metre for CH4, -0.11 ± 0.05 watts per square metre for sulfate aerosols, and 0.09 ± 0.06 watts per square metre for black carbon aerosols. China's eventual goal of improving air quality will result in changes in radiative forcing in the coming years: a reduction of sulfur dioxide emissions would drive a faster future warming, unless offset by larger reductions of radiative forcing from well-mixed greenhouse gases and black carbon.


Assuntos
Poluição do Ar/análise , Atmosfera/química , Efeito Estufa , Aerossóis/análise , Aerossóis/química , Dióxido de Carbono/análise , China , Combustíveis Fósseis , Metano/análise , Fuligem/análise , Sulfatos/análise , Dióxido de Enxofre/análise , Incerteza
20.
Proc Natl Acad Sci U S A ; 112(30): 9299-304, 2015 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-26170316

RESUMO

In the Arctic, climate warming enhances vegetation activity by extending the length of the growing season and intensifying maximum rates of productivity. In turn, increased vegetation productivity reduces albedo, which causes a positive feedback on temperature. Over the Tibetan Plateau (TP), regional vegetation greening has also been observed in response to recent warming. Here, we show that in contrast to arctic regions, increased growing season vegetation activity over the TP may have attenuated surface warming. This negative feedback on growing season vegetation temperature is attributed to enhanced evapotranspiration (ET). The extra energy available at the surface, which results from lower albedo, is efficiently dissipated by evaporative cooling. The net effect is a decrease in daily maximum temperature and the diurnal temperature range, which is supported by statistical analyses of in situ observations and by decomposition of the surface energy budget. A daytime cooling effect from increased vegetation activity is also modeled from a set of regional weather research and forecasting (WRF) mesoscale model simulations, but with a magnitude smaller than observed, likely because the WRF model simulates a weaker ET enhancement. Our results suggest that actions to restore native grasslands in degraded areas, roughly one-third of the plateau, will both facilitate a sustainable ecological development in this region and have local climate cobenefits. More accurate simulations of the biophysical coupling between the land surface and the atmosphere are needed to help understand regional climate change over the TP, and possible larger scale feedbacks between climate in the TP and the Asian monsoon system.


Assuntos
Mudança Climática , Transpiração Vegetal , Agricultura , Ásia , Clima , Simulação por Computador , Ecologia , Geografia , Modelos Estatísticos , Modelos Teóricos , Poaceae , Temperatura , Tibet , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...