Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Ethnopharmacol ; 332: 118385, 2024 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-38797379

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Sophora flavescens is often used in traditional Chinese medicine for skin issues, diarrhea, and vaginal itching (Plant names have been checked with http://www.the/plant/list.org on Feb 22nd, 2024). Oxymatrine (OY), a major bioactive compound from Sophora flavescens, is commonly used in China to treat ulcerative colitis, but its mechanisms are still unclear. AIM OF THE STUDY: Recent studies have found that the crosstalk between ferroptosis and inflammation is an important mechanism in the pathogenesis of UC. The aim of this study was to investigate the potential underlying mechanisms of OY treatment on DSS-induced ulcerative colitis, specifically focusing on the processes of ferroptosis and inflammation. MATERIALS AND METHODS: Bioinformatics methods were used to identify key targets of OY for ferroptosis and inflammation in ulcerative colitis, based on GEO data and FerrDb database. Then, 4% DSS solution was used to induce UC model. OY's impact on morphological changes was assessed using colon views, Hematoxylin and eosin (HE) staining, and transmission electron microscopy (TEM). Ferroptosis phenotype index and inflammations factors were detected by ELISA or chem-bio detection kits. The screen out hub related genes about ferroptosis and inflammation were verified by RT-PCR, immunohistochemistry (IHC), and western blotting (WB) respectively. RESULTS: Bioinformatics results show that there are 16 key target genes involved in ferroptosis and inflammation interaction of OY treatment for UC, such as IL6, NOS2, IDO1, SOCS1, and DUOX. The results of animal experiments show that OY could depress inflammatory factors (IL-1ß, IL-6, TNF-α, HMGB1, and NLRP3) and reduce iron deposition (Fe2+, GSH). Additionally, OY suppressed the hub genes or proteins expression involved in ferroptosis and inflammation, including IL-1ß, IL-6, NOS2, HIF1A, IDO1, TIMP1, and DUOX2. CONCLUSION: This present study combines bioinformatics, molecular biology, and animal experimental research evidently demonstrated that OY attenuates UC by improving ferroptosis and inflammation, mainly target to the expression of IL-1ß, IL-6, NOS2, HIF1A, IDO1, TIMP1, and DUOX2.


Assuntos
Alcaloides , Colite Ulcerativa , Sulfato de Dextrana , Ferroptose , Quinolizinas , Sophora , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/metabolismo , Colite Ulcerativa/patologia , Quinolizinas/farmacologia , Quinolizinas/uso terapêutico , Sophora/química , Ferroptose/efeitos dos fármacos , Animais , Alcaloides/farmacologia , Alcaloides/uso terapêutico , Camundongos , Inflamação/tratamento farmacológico , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Camundongos Endogâmicos C57BL , Masculino , Modelos Animais de Doenças , Colo/efeitos dos fármacos , Colo/patologia , Colo/metabolismo , Sophora flavescens , Matrinas
2.
Heliyon ; 10(7): e28019, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38560167

RESUMO

Aim: Atractylodes macrocephala Rhizome (AM) has been used to treat hyperlipidemia for centuries, but its functional components and mechanisms are not clear. This research aimed to investigate the active components in AM and the mechanisms that underlie its anti-hyperlipidemia effect. Methods: SD rats were fed a high-sucrose high-fat diet in conjunction with alcohol (HSHFDAC) along with different AM extracts (AMW, AMO, AME, and AMP) for 4 weeks. AM's active components were analyzed using multiple databases, and their mechanisms were explored through network pharmacology. The relationship between AM's effect of enhancing serum HDL-c and regulating the expression of reverse cholesterol transport (RCT)-related proteins (Apo-A1, LCAT, and SR-BI) was further validated in the HSHFDAC-induced hyperlipidemic rats. The kidney and liver functions of the rats were measured to evaluate the safety of AM. Results: AMO, mainly comprised of volatile and liposoluble components, contributed the most significant anti-hyperlipidemia effect among the four extracts obtained from AM, significantly improving the blood lipid profile. Network pharmacology analysis also suggested that volatile and liposoluble components, comprise AM's main active components and they might act on signaling pathways associated with elevated HDL-c. Validation experiments found that AMO substantially and dose-dependently increased HDL-c levels, upregulated the expression of Apo-A1, SR-BI, and LCAT, improved the pathological changes in the kidney and liver, and significantly reduced the serum creatinine levels in rats with hyperlipidemia. Conclusion: The main anti-hyperlipidemia active components of AM are its volatile and liposoluble components, which may enhance serum HDL-c by increasing the expression of the RCT-related proteins Apo-A1, LCAT, and SR-BI.

3.
J Ethnopharmacol ; 319(Pt 3): 117329, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-37879510

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Bone defects are difficult to treat and have a high incidence of nonunion. The Epimedii folium-Rhizoma drynariae herbal pair (EDP) is a traditional Chinese medicine (TCM) used for treating bone diseases. However, the mechanisms by which EDP promotes osteogenesis or bone formation remain largely unclear. AIM OF THE STUDY: This study aimed to investigate the mechanism of EDP promoted bone formation in bone defects using network pharmacology and experiments. MATERIALS AND METHODS: The chemical components of EDP were analyzed by UHPLC-MS. The hub target and pathway enrichment analysis was conducted using molecular docking or network pharmacology. The pharmacological actions of EDP were determined by µCT and histopathology examination using a bone defect rat model. The effects of EDP on the mRNA expression of Bmp2, Smad2/5, Runx2, and Alp genes were measured by RT-PCR, while changes in the protein expressions of BMP2, COL1A1, SPP1, ALP, and RUNX2in the tibia tissues of the rats in response to EDP were analyzed by immunohistochemical staining or Western blot. We also performed cell viability assays, Alizarin Red and ALP staining assays, and RT-PCR to better understand how EDP affected osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs). RESULTS: Identified 14 key compounds and 47 hub targets of EDP that may be involved in promoting osteogenesis to repair bone defects. And the BMP/Smad/Runx2 pathway was likely the key pathway through which EDP promoted bone defects repairing. The results of in vivo rat experiments indicated that EDP effectively promoted tibia repair in the model rats and activated the BMP/Smad/Runx2 pathway in the tibia tissue, with upregulating Bmp2, Bmpr1α, Smad2/5, Runx2, and Alp genes, and increased the protein expression of BMP2, COL1A1, RUNX2, and ALP. In vitro, EDP was found to increase the proliferation, differentiation, and mineralization in BMSCs- and also up-regulated the expression of key genes in the BMP/Smad/Runx2 pathway. CONCLUSION: This study highlighted the ability of EDP to promote the osteogenic differentiation to enable bone repair by activating the BMP/Smad/Runx2 pathway.


Assuntos
Subunidade alfa 1 de Fator de Ligação ao Core , Osteogênese , Ratos , Animais , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Farmacologia em Rede , Simulação de Acoplamento Molecular , Células Cultivadas , Diferenciação Celular
4.
Medicine (Baltimore) ; 102(44): e34683, 2023 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-37933071

RESUMO

To explore the potential mechanism of Gegen Qinlian decoction (GGQL) in the treatment of COVID-19 comorbid with diabetes mellitus (DM) through network pharmacology and molecular docking, and to provide theoretical guidance for clinical transformation research. Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform was used to screen the active compounds and targets of GGQL, the targets of COVID-19 comorbid with DM were searched based on Genecards database. Protein-protein interaction network was constructed using String data platform for the intersection of compounds and disease targets, the Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analysis of the intersection targets was performed using DAVID database. Cytoscape software was used to construct the "compound target-pathway (C-T-P)" of GGQL in the treatment of COVID-19 comorbid with DM, the molecular docking platform was used to complete the simulated docking of key compounds and targets. We obtained 141 compounds from GGQL, revealed 127 bioactive compounds and 283 potential targets of GGQL. Quercetin, kaempferol and formononetin in GGQL play a role by modulating the targets (including AR, GSK3B, DPP4, F2, and NOS3). GGQL might affect diverse signaling pathways related to the pathogenesis of coronavirus disease - COVID-19, AGE-RAGE signaling pathway in diabetic complications, IL-17 signaling pathway, human cytomegalovirus infection and Th17 cell differentiation. Meanwhile, molecular docking showed that the selected GGQL core active components had strong binding activity with the key targets. This study revealed that GGQL play a role in the treatment of COVID-19 comorbid with DM through multi-component, multi-target and multi-pathway mode of action, which provided good theoretical basis for further verification research.


Assuntos
COVID-19 , Diabetes Mellitus , Medicamentos de Ervas Chinesas , Humanos , Simulação de Acoplamento Molecular , Farmacologia em Rede , Medicina Tradicional Chinesa
5.
Biomed Pharmacother ; 169: 115893, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37979377

RESUMO

AIM: Diabetes osteoporosis (DOP) is a chronic bone metabolic disease induced by diabetes, whose morbidity continues to increase. Epimedium brevicornum Maxim (EB), a popular Chinese traditional medicine, has been used to treat bone diseases in China for thousands of years. But its material basis and specific mechanism of action are not clear. METHODS: Epimedium brevicornum crude polysaccharide (EPE) is the main component, in this research the characterized the structure of EBPC1 purified from EPE was detected and its effects on cell proliferation, differentiation, and cytoskeletal in osteoblasts induced by high glucose. RESULTS: The molecular weight of EBPC1 was 10.5 kDa. It was mainly comprised of glucose and galactose, and the backbone of EBPC1 was→4)-α-D-Galp-(1→4)-α-D-Galp-(1→6)-ß-D-Galp-(1→6)-ß-D-Galp-(1→4)-α-D-Glcp-(1→4)-α-D-Glcp-(1→. The results from in vitro experiments revealed that EBPC1 significantly increased alkaline phosphatase (ALP) activity and mineralized nodule formation in primary osteoblasts, also significantly up-regulated expression of Alp mRNA and Runx2 mRNA in the presence of EBPC1 pretreatment. Moreover, EBPC1 modulated apoptosis via the regulation of Bax/Bcl2. CONCLUSION: These results indicate that EBPC1 treatment can promote osteogenesis during DOP, which can ameliorate apoptosis by regulating Bax/Bcl2 and accelerating osteogenesis in osteoblasts.


Assuntos
Diabetes Mellitus , Epimedium , Osteoporose , Humanos , Epimedium/química , Osteogênese , Proteína X Associada a bcl-2/metabolismo , Osteoporose/metabolismo , Diferenciação Celular , Osteoblastos , Polissacarídeos/química , RNA Mensageiro/metabolismo , Diabetes Mellitus/metabolismo
6.
Artigo em Inglês | MEDLINE | ID: mdl-36644440

RESUMO

Aim: Hyperuricemia (HUA) has received increased attention in the last few decades due to its global prevalence. Our previous study found that administration of a macroporous resin extract of Dendrobium officinale leaves (DoMRE) to rats with HUA that was induced by exposure to potassium oxazine combined with fructose and a high-purine diet led to a significant reduction in serum uric acid (SUA) levels. The aim of this study was to explore the effects of DoMRE on hyperuricemia induced by anthropomorphic unhealthy lifestyle and to elucidate its possible mechanisms of action. Methods: Dosages (5.0 and 10.0 g/kg/day) of DoMRE were administered to rats daily after induction of HUA by anthropomorphic unhealthy lifestyle for 12 weeks. The levels of UA in the serum, urine, and feces; the levels of creatinine (Cr) in the serum and urine; and the levels of aspartate aminotransferase (AST) and alanine aminotransferase (ALT) in serum were all measured using an automatic biochemical analyzer. The activities of xanthine oxidase (XOD) and adenosine deaminase (ADA) in the serum, liver, and intestine tissue supernatant were measured using appropriate kits for each biological target. The expressions levels of UA transporters (ABCG2 and GLUT9), tight junction (TJ) proteins (ZO-1 and occludin), and inflammatory factors (IL-6, IL-8, and TNF-α) in the intestine were assayed by immunohistochemical (IHC) staining. Hematoxylin and eosin (H&E) staining was used to assess histological changes in the renal and intestinal tissues. Results: DoMRE treatment significantly reduced SUA levels and concomitantly increased fecal UA (FUA) levels and the fractional excretion of UA (FEUA) in HUA rats. Furthermore, DoMRE significantly reduced both the XOD activity in the serum, liver, and intestine and the ADA activity in the liver and intestine. DoMRE also effectively regulated the expression of GLUT9 and ABCG2 in the intestine, and it significantly upregulated the expression of the intestinal TJ proteins ZO-1 and occludin. Therefore, DoMRE reduced the damage to the intestinal barrier function caused by the increased production of inflammatory factors due to HUA to ensure normal intestinal UA excretion. Conclusion: DoMRE demonstrated anti-HUA effects in the HUA rat model induced by an anthropomorphic unhealthy lifestyle, and the molecular mechanism appeared to involve the regulation of urate transport-related transporters (ABCG2 and GLUT9) in the intestine, protection of the intestinal barrier function to promote UA excretion, and inhibition of XOD and ADA activity in the liver and intestine to inhibit UA production in the HUA-induced rats.

7.
Comb Chem High Throughput Screen ; 26(7): 1424-1436, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36043772

RESUMO

AIM: The aim of the study was to explore the efficacy as well as the mechanism of action of Pitongshu (PTS) on rats with functional dyspepsia (FD) induced by iodoacetamide gavage and tail clamping. METHODS: The bioactive components of PTS were obtained from the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP), whereas the potential targets of PTS were obtained from the Similarity Ensemble Approach (SEA), TCMSP, and Swiss Target Prediction Database. The disease targets were obtained from the DisGeNET database, whereas Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were performed using the R Software. The method of iodoacetamide gavage combined with tail clamping was used to establish the FD rat model in this study. Body weight, food intake, gastrointestinal motility, gastric acidity and secretion, and the mechanical pain threshold of rats were measured. The open-field test was also performed. The stomach and duodenum were histologically observed. The levels of serotonin (5-HT), Calcitonin Gene-Related Peptide (CGRP), Motilin (MTL), and Gastrin (GAS) in gastric tissues were detected by ELISA. RESULTS: A total of 139 bioactive components and 17 potential targets of PTS were identified through a network pharmacology approach. The results of GO and KEGG enrichment analyses indicated that PTS could reduce the 5-HT secretion of gastric tissues through the serotonergic synaptic pathway and alleviate the symptoms of FD, indicating that PTS plays a therapeutic role. The results of animal experiments showed that PTS could increase body weight and food intake, improve autonomous activity, and decrease gastric acidity and secretion in FD rats. Furthermore, gastric sensitivity increased in FD rats, and PTS treatment could significantly decrease it. The results of ELISA showed that the overexpression of 5-HT and CGRP was decreased after PTS treatment in FD rats. Lastly, PTS could significantly improve gastrointestinal motility, as well as the levels of GAS and MTL in FD rats. CONCLUSION: PTS may reduce 5-HT secretion by regulating the serotonergic synaptic pathway, thereby reducing visceral sensitivity and alleviating the symptoms of FD.


Assuntos
Dispepsia , Ratos , Animais , Dispepsia/tratamento farmacológico , Serotonina , Peptídeo Relacionado com Gene de Calcitonina/uso terapêutico , Iodoacetamida/uso terapêutico , Motilidade Gastrointestinal/fisiologia
8.
Front Pharmacol ; 13: 935714, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35899110

RESUMO

Metabolic hypertension (MH) is the most common type of hypertension worldwide because of unhealthy lifestyles, such as excessive alcohol intake and high-sugar/high-fat diets (ACHSFDs), adopted by humans. Poor diets lead to a decrease in the synthesis of short-chain fatty acids (SCFAs), which are produced by intestinal flora and transferred by G protein-coupled receptors (GPCRs), resulting in impaired gastrointestinal function, disrupted metabolic processes, increased blood pressure (BP), and ultimately, MH. It is not clear whether Dendrobium officinale polysaccharide (DOPS) can mediate its effects by triggering the SCFAs-GPCR43/41 pathway. In this study, DOPS, with a content of 54.45 ± 4.23% and composition of mannose, glucose, and galacturonic acid at mass percentages of 61.28, 31.87, and 2.53%, was isolated from Dendrobium officinale. It was observed that DOPS, given to rats by intragastric administration after dissolution, could lower the BP and improve the abnormal lipid metabolic processes in ACHSFD-induced MH rats. Moreover, DOPS was found to increase the production, transportation, and utilization of SCFAs, while improving the intestinal flora and strengthening the intestinal barrier, as well as increasing the intestinal levels of SCFAs and the expression of GPCR43/41. Furthermore, DOPS improved vascular endothelial function by increasing the expression of GPCR41 and endothelial nitric oxide synthase in the aorta and the nitric oxide level in the serum. However, these effects were all reversed by antibiotic use. These findings indicate that DOPS is the active component of Dendrobium officinale, and it can reverse MH in rats by activating the intestinal SCFAs-GPCR43/41 pathway.

9.
Artigo em Inglês | MEDLINE | ID: mdl-35502176

RESUMO

Materials and Methods: The active compounds in DO, their targets, and targets associated with hyperlipidemia were screened across various databases, and the hidden targets of DO in treating hyperlipidemia were forecast. The compound-target (C-T), protein-protein interaction (PPI), and compound-target-pathway (C-T-P) networks of DO were set up with Cytoscape software. The hub genes and core clusters of DO predicted to be active against hyperlipidemia were calculated by Cytoscape. The DAVID database was adopted for Gene Ontology (GO) analysis and KEGG pathway enrichment analysis. Next, we used the high-sucrose-fat diet and alcohol (HFDA)-induced hyperlipidemia rats to evaluate the hypolipidemic effect of DO. Results: In this study, we obtained 264 compounds from DO, revealed 11 bioactive compounds, and predicted 89 potential targets of DO. The network analysis uncovered that naringenin, isorhamnetin, and taxifolin might be the compounds in DO that are mainly in charge of its roles in hyperlipidemia and might play a role by modulating the targets (including PPARG, ADIPOQ, AKT1, TNF, and APOB). The pathway analysis showed that DO might affect diverse signaling pathways related to the pathogenesis of hyperlipidemia, including PPAR signaling pathway, insulin resistance, AMPK signaling pathway, and non-alcoholic fatty liver disease simultaneously. Meanwhile, in the HFDA-induced hyperlipidemia rat model, DO could significantly decrease the level of TC, TG, LDL-c, and ALT in serum, and increase HDL-c as well. The liver pathological section indicated that DO could ease liver damage and lipid cumulation. Conclusion: In summary, the biological targets of the main bioactive compounds in DO were found to distribute across multiple metabolic pathways. These findings suggest that a mutual regulatory system consisting of multiple components, targets, and pathways is a likely mechanism through which DO may improve hyperlipidemia. Validation experiments indicated that DO may treat hyperlipidemia by affecting NAFLD-related signaling pathways.

10.
Comb Chem High Throughput Screen ; 25(8): 1294-1303, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34053424

RESUMO

AIMS AND OBJECTIVES: Fructose, as a ubiquitous monosaccharide, can promote ATP consumption and elevate circulating Uric Acid (UA) levels. Our previous studies have confirmed that the macroporous resin extract of Dendrobium officinale leaves (DoMRE) could reduce the UA level of rats with hyperuricemia induced by a high-purine diet. This study aimed to investigate whether DoMRE had a UA-lowering effect on rats with hyperuricemia caused by fructose combined with potassium oxonate, so as to further clarify the UA-lowering effect of DoMRE, and to explore the UAlowering effect of DoMRE on both UA production and excretion. MATERIALS AND METHODS: Rats with hyperuricemia induced by fructose and potassium oxonate were administered with DoMRE and vehicle control, respectively, to compare the effects of the drugs. At the end of the experiment, the Serum Uric Acid (SUA) and Creatinine (Cr) levels were measured using an automatic biochemical analyzer, the activities of xanthine oxidase (XOD) were measured using an assay kit, and the protein expressions of Urate Transporter 1 (URAT1), glucose transporter 9 (GLUT9), and ATP-Binding Cassette Superfamily G member 2 (ABCG2) were assessed using immune-histochemical and western blot analyses. Hematoxylin and eosin staining was used to assess the histological changes in the kidney, liver, and intestine. RESULTS: Fructose and potassium induced hyperuricemia in rats. Meanwhile, the activities of XOD were markedly augmented, the expression of URAT1 and GLUT9 was promoted, and the expression of ABCG2 was reduced, which were conducive to the elevation of UA. However, exposure to DoMRE reversed these fructose- and potassium oxonate-induced negative alternations in rats. The activities of XOD were recovered to the normal level, reducing UA formation; the expressions of URAT1, ABCG2, and GLUT9 returned to the normal level, resulting in an increase in renal urate excretion. CONCLUSION: DoMRE reduces UA levels in rats with hyperuricemia induced by fructose combined with potassium oxonate by inhibiting XOD activity and regulating the expression of ABCG2, URAT1, and GLUT9. DoMRE is a potential therapeutic agent for treating hyperuricemia through inhibiting UA formation and promoting UA excretion.


Assuntos
Dendrobium , Hiperuricemia , Trifosfato de Adenosina/metabolismo , Animais , Frutose , Hiperuricemia/induzido quimicamente , Hiperuricemia/tratamento farmacológico , Rim/metabolismo , Ácido Oxônico , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Folhas de Planta , Ratos , Ácido Úrico , Xantina Oxidase
11.
Biomed Pharmacother ; 143: 112141, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34509822

RESUMO

AIM: Modified Suanzaoren Decoction (MSZRD) is obtained by improving Suanzaoren Decoction (SZRT), a traditional Chinese herbal prescription that has been used to treat insomnia for more than thousands of years. Our previous study showed that MSZRD can improve the gastrointestinal discomfort related insomnia by regulating Orexin-A. This study is the first study to evaluate the effects and possible mechanisms of MSZRD in mice with insomnia caused by p-chlorophenylalanine (PCPA) combined with multifactor random stimulation. METHODS: After 14 days of multifactor stimulation to ICR mice, a PCPA suspension (30 mg/mL) was injected intraperitoneally for two consecutive days to establish an insomnia model. Three different doses of MSZRD (3.6, 7.2, and 14.4 g/kg/day) were given to ICR mice for 24 days. The food intake and back temperature were measured, and behavioral tests and pentobarbital sodium-induced sleep tests were conducted. The levels of Orexin-A, corticotropin-releasing hormone (CRH), adrenocorticotropic hormone (ACTH), and adrenocortical hormones (CORT) in the serum and 5-hydroxytryptamine (5-HT), dopamine (DA), and norepinephrine (NE) in hypothalamus were measured using enzyme-linked immunosorbent assay (ELISA) kits. The levels of γ-aminobutyric acid (GABA) and glutamic acid (Glu) were measured by high-performance liquid chromatography (HPLC). The expression of 5HT1A receptor (5-HTRIA) and orexin receptor 2 antibody (OX2R) was measured by Western blot (WB) and immunohistochemical staining (ICH). Hematoxylin and eosin (H&E) staining and Nissl staining were used to assess the histological changes in hypothalamus tissue. RESULTS: Of note, MSZRD can shorten the sleep latency of insomnia mice (P < 0.05, 0.01), prolonged the sleep duration of mice (P < 0.05, 0.01), and improve the circadian rhythm disorder relative to placebo-treated animals. Furthermore, MSZRD effectively increased the content of 5-HT and 5-HTR1A protein in the hypothalamus of insomnia mice (P < 0.05, 0.01), while downregulated the content of DA and NE (P < 0.05, 0.01). Importantly, serum GABA concentration was increased by treatment with MSZRD (P < 0.05), as reflected by a decreased Glu/GABA ratio (P < 0.05). Moreover, MSZRD decreased the levels of CORT, ACTH, and CRH related hormones in HPA axis (P < 0.05, 0.01). At the same time, MSZRD significantly downregulated the serum Orexin-A content in insomnia mice (P < 0.05), as well as hypothalamic OX2R expression (P < 0.05). In addition, MSZRD also improved the histopathological changes in hypothalamus in insomnia mice. CONCLUSION: MSZRD has sleep-improvement effect in mice model of insomnia. The mechanism may be that regulating the expression of Orexin-A affects the homeostasis of HPA axis and the release of related neurotransmitters in mice with insomnia.


Assuntos
Glândulas Suprarrenais/efeitos dos fármacos , Comportamento Animal/efeitos dos fármacos , Medicamentos de Ervas Chinesas/farmacologia , Sistema Hipotálamo-Hipofisário/efeitos dos fármacos , Orexinas/metabolismo , Medicamentos Indutores do Sono/farmacologia , Distúrbios do Início e da Manutenção do Sono/tratamento farmacológico , Sono/efeitos dos fármacos , Glândulas Suprarrenais/metabolismo , Glândulas Suprarrenais/fisiopatologia , Animais , Modelos Animais de Doenças , Sistema Hipotálamo-Hipofisário/metabolismo , Sistema Hipotálamo-Hipofisário/fisiopatologia , Masculino , Camundongos Endogâmicos ICR , Neurotransmissores/metabolismo , Receptores de Orexina/metabolismo , Transdução de Sinais , Distúrbios do Início e da Manutenção do Sono/metabolismo , Distúrbios do Início e da Manutenção do Sono/fisiopatologia
12.
Artigo em Inglês | MEDLINE | ID: mdl-34122607

RESUMO

Dendrobium officinale (DOF) is a traditional Chinese edible and officinal plant. Ultrafine DOF powder (DOFP) can regulate lipids and histopathology in the liver, but the underlying mechanisms of hepatic fatty acid (FA) metabolism, which is generally correlated with the development of nonalcoholic fatty liver disease (NAFLD), remain unclear. The purpose of the present study was to investigate whether DOFP treatment alters hepatic FA metabolism in NAFLD mice by using multidimensional mass spectrometry-based shotgun lipidomics (MDMS-SL) and analyse the underlying mechanisms. A 3-week DOFP treatment prevented lipid deposition and improved hepatic histopathology in NAFLD mice after withdrawal from the high-sucrose, high-fat (HSHF) diet, and it decreased triglyceride and FA content in the liver. Furthermore, the C16 : 0/C14 : 0 and C18 : 1/18 : 0 ratios in FAs were significantly decreased in the DOFP treatment group, and the C20 : 4/C20 : 3 and C22 : 4/C22 : 3 ratios were increased, and saturated FA was inhibited. Additionally, DOFP treatment significantly increased the content of two FA ß-oxidation-related proteins (carnitine palmitoyltransferase 1-α and acyl-coenzyme A oxidase 1). It also decreased the content of a FA synthesis-related protein (fatty acid synthase), a FA desaturation-related protein (stearoyl-coenzyme A desaturase-1), and a FA uptake-related protein (fatty acid transport protein 2). Moreover, DOFP treatment improved dysregulated levels of major phospholipids in the livers of model mice. The results of this study confirm that DOFP treatment in NAFLD mice has liver recovery effects by regulating FA metabolism.

13.
Food Funct ; 12(12): 5524-5538, 2021 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-34002173

RESUMO

Given the increasing global trend toward unhealthy lifestyles and dietary decisions, such as "over-consumption of alcohol, and high sugar and fat diets" (ACHSFDs), it is not surprising that metabolic hypertension (MH) is now the most common type of hypertension. There is an urgent, global need for effective measures for the prevention and treatment of MH. Improper diet leads to decreased short-chain fatty acid (SCFA) production in the gut, leading to decreased gastrointestinal function, metabolism, and blood pressure as a result of signaling through G-protein-coupled receptors (GPCRs), ultimately causing MH. Previous studies have suggested that Dendrobium officinale (DO) may improve gastrointestinal function, lower blood pressure, and regulate metabolic abnormalities, but it is not clear whether it acts on MH by increasing SCFA and, if so, how. In this research, it was observed that Dendrobium officinale ultrafine powder (DOFP) could lower blood pressure and improve lipid abnormalities in ACHSFD-induced MH model rats. Moreover, DOFP was found to improve the intestinal flora and increased the SCFA level in feces and serum, as well as increased the expressions of GPCR43/41 and eNOS and the nitric oxide (NO) level. An experiment on isolated aorta rings revealed that DOFP improved the vascular endothelial relaxation function in MH rats, and this effect could be blocked by the eNOS inhibitor l-NAME. These experimental results suggest that DOFP improved the intestinal flora and increased the production, transportation, and utilization of SCFA, activated the intestinal-vascular axis SCFA-GPCR43/41 pathway, improved vascular endothelial function, and finally lowered blood pressure in MH model rats. This research provides a new focus for the mechanism of the effect of DOFP against MH by triggering the enteric-origin SCFA-GPCR43/41 pathway.


Assuntos
Dendrobium/química , Suplementos Nutricionais , Ácidos Graxos Voláteis/metabolismo , Hipertensão/dietoterapia , Receptores Acoplados a Proteínas G/metabolismo , Animais , Pressão Sanguínea , Colesterol/sangue , Dieta , Modelos Animais de Doenças , Fezes , Microbioma Gastrointestinal , Trato Gastrointestinal/metabolismo , Fígado/patologia , Masculino , Óxido Nítrico/sangue , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Ratos , Transdução de Sinais
14.
Artigo em Inglês | MEDLINE | ID: mdl-35003313

RESUMO

MATERIALS AND METHODS: After intragastric administration of DOFP for 3 weeks, the rat UC model was made by the administration of 4% oral DSS solution for one week, and the drug was given at the same time. During the experiment, the disease activity index (DAI) score of the rats was regularly computed. At the end of the experiment, the blood routine indexes of rats were obtained. The histopathological changes in the colon were monitored by hematoxylin-eosin (H&E) and PAS staining and observation of ultrastructural changes in the colon by transmission electron microscope. Occludin expression in the colon was monitored by Western blot, the expression of claudin-1 and ZO-1 in the colon was detected by immunofluorescence, and the expression of TNF-α, IL-6, and IL-1ß in the colon was detected by immunohistochemistry. RESULTS: The results firstly indicated that DOFP could significantly alleviate the signs and symptoms of the DSS-induced rats UC model, which manifested as improvement of body weight loss, increase of colon length, and improvement of the symptoms of diarrhea and hematochezia. Then, results from histopathology, blood routine examination, and transmission electron microscope analysis further implied that DOFP could dramatically reduce inflammatory cell infiltration and restore intestinal epithelial barrier integrity. In addition, the experiments of Western Blot analysis, immunofluorescence, and PAS staining also further confirmed that DOFP could markedly increase related protein expressions of the intestinal barrier and mucus barrier, as the expression of occludin, claudin-1, and ZO-1 in the colon significantly decreased. The experiments of immunohistochemistry confirmed that DOFP could markedly decrease protein expression levels of inflammatory cytokines TNF-α, IL-6, and IL-1ß. CONCLUSION: DOFP notably alleviated inflammatory lesions, repaired the colon mucosa damage by promoting the expression of tight junction proteins occludin, claudin-1, and ZO-1 and inhibiting the release of inflammatory factors TNF-α, IL-6, and IL-1ß, and finally achieved the purpose of treating UC.

15.
Comb Chem High Throughput Screen ; 23(5): 402-410, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32264810

RESUMO

AIM AND OBJECTIVE: The Dendrobium officinalis flower (DOF) is popular in China due to common belief in its anti-aging properties and positive effects on "nourish yin". However, there have been relatively few confirmatory pharmacological experiments conducted to date. The aim of this work was to evaluate whether DOF has beneficial effects on learning and memory in senescent rats, and, if so, to determine its potential mechanism of effect. MATERIALS AND METHODS: SD rats were administrated orally DOF at a dose of 1.38, or 0.46 g/kg once a day for 8 weeks. Two other groups included a healthy untreated control group and a senescent control group. During the 7th week, a Morris water maze test was performed to assess learning and memory. At the end of the experiment, serum and brain samples were collected to measure concentrations of antioxidant enzymes, including malondialdehyde (MDA), superoxide dismutase (SOD), catalase (CAT), and glutathione reductase (GSH-Px) in serum, and the neurotransmitters, including γ-aminobutyric acid (γ-GABA), Glutamic (Glu), and monoamine oxidase B (MAO-B) in the brain. Histopathology of the hippocampus was assessed using hematoxylin-eosin (H&E) staining. RESULTS: The results suggested that treatment with DOF improved learning as measured by escape latency, total distance, and target quadrant time, and also increased levels of γ-GABA in the brain. In addition, DOF decreased the levels of MDA, Glu, and MAO-B, and improved SOD and GSHPx. Histopathological analysis showed that DOF also significantly reduced structural lesions and neurodegeneration in the hippocampus relative to untreated senescent rats. CONCLUSION: DOF alleviated brain aging and improved the spatial learning abilities in senescent rats, potentially by attenuating oxidative stress and thus reducing hippocampal damage and balancing the release of neurotransmitters.


Assuntos
Antioxidantes/farmacologia , Dendrobium/química , Flores/química , Aprendizagem/efeitos dos fármacos , Transtornos da Memória/tratamento farmacológico , Neurotransmissores/metabolismo , Animais , Antioxidantes/química , China , Flavonoides/química , Flavonoides/farmacologia , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Hipocampo/patologia , Masculino , Estresse Oxidativo/efeitos dos fármacos , Polissacarídeos/química , Polissacarídeos/farmacologia , Ratos , Ratos Sprague-Dawley
16.
Front Pharmacol ; 10: 1677, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32076406

RESUMO

Nω-nitro-L-arginine methyl ester (L-NAME), an inhibitor of nitric oxide (NO) biosynthesis, results in hypertension and liver injury. This study aimed at investigating the changes of liver lipometabonomics and exploring the underlying mechanisms of liver injury in the L-NAME-treated rats. The male Sprague-Dawley (SD) rats were treated with L-NAME (40 mg/kg, p.o.) for 8 weeks. After that, the liver, aorta, fecal, and serum were collected for analysis. The results showed that L-NAME induced hypertension and disordered the endothelial nitric oxide synthase (eNOS)-NO pathway in the treated rats. L-NAME could also increase the levels of serum total cholesterol (TC), triglyceride (TG), alanine transaminase (ALT), and aspartate transaminase (AST). The multidimensional mass spectrometry-based shotgun lipidomics (MDMS-SL) analysis showed that L-NAME could induce significant changes of the total hepatic lipids and most hepatic triglycerides, as well as fatty acid (FA). A positive correlation was found between the blood pressure and TAG. Immunofluorescence and Western-Blot experiments indicated that the L-NAME treatment significantly influenced some FA ß-oxidation, desaturation, and synthesis-related proteins. The increase of intestinal inflammation, decrease of microcirculation and tight junction proteins, as well as alterations of microbial communities were observed in the L-NAME induced hypertensive rats, as well as alterations of microbial communities were notable correlation to TAG and FA species. This study demonstrated that the L-NAME-induced hypertensive rats exhibiting liver injury were the joint action of hepatic abnormal fatty acid metabolism and microcirculation disorder. Furthermore, the gut microflora, as well as the changes of FA ß-oxidation (ACOX, CPT1α), desaturation (SCD-1), and synthesis (FAS) may be the potential mechanisms for abnormal fatty acid metabolism.

17.
Arch Gerontol Geriatr ; 65: 211-7, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27100684

RESUMO

This study investigated whether sleep duration and quality were related to life satisfaction (LS) among older Chinese adults and whether depression mediated those relationships. Cross-sectional data from the aging arm of the Rugao Longevity and Aging Study were used. Sleep duration, sleep quality, depression, LS and covariates were analyzed using logistic regressions. To assess the potential mediation of depression on the association between sleep duration and quality and LS, Aroian tests were used. Of 1756 older Chinese adults aged 70-84 years, 90.7% of the men and 83.3% of the women reported being satisfied with their lives. After adjusting for covariates, older adults who slept ≤6h per night were more likely to suffer from life dissatisfaction compared with those who slept 7-8h (OR=2.67, 95% CI 1.86-3.79), and individuals who slept poorly were almost 2 times (OR=2.91, 95% CI 2.16-3.91) more likely to have life dissatisfaction. The Aroian tests confirmed that these relationships were partially mediated by depression (p<0.001). Between short sleep and LS, the mediating effect of depression accounted for 13.9% of the total effects. Moreover, the mediating effect of depression on the association between sleep quality and LS was 13.3%. Short sleep duration and poor sleep quality were inversely associated with LS, and the relationships were partially mediated by depression. Our study suggests that both sleep and depression status are important factors for LS among the elderly.


Assuntos
Depressão/psicologia , Satisfação Pessoal , Sono , Idoso , Idoso de 80 Anos ou mais , Envelhecimento , Povo Asiático , China , Estudos Transversais , Feminino , Humanos , Masculino , Fatores de Tempo
18.
Age Ageing ; 45(3): 360-5, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27016573

RESUMO

OBJECTIVES: to examine the associations of two common CRP gene polymorphisms with CRP levels, frailty and co-morbidity in an elderly Chinese population. DESIGN: a population-based cohort study. SETTING AND PARTICIPANTS: we obtained data on 1,723 elderly participants aged 70-84 from the ageing arm of the Rugao Longevity and Ageing study (RuLAS), a population-based observational cohort study conducted in Rugao, Jiangsu province, China. MEASUREMENTS: the genotyping of two common CRP gene polymorphisms (rs1205 and rs3093059) was performed. Items concerning the frailty index and co-morbidity were collected. RESULTS: the mean age of the study population was 75.3 ± 3.9 years, and 53.5% (n = 922) were women. The minor allele frequencies of rs1205 and rs3093059 were 42.4% (C allele) and 16.9% (C allele), respectively. The polymorphisms rs1205 and rs3093059 were significantly associated with CRP levels (ß = 0.113 and 0.222, all P < 0.001). Non-significant association between rs1205 and rs3093059 and frailty, as well as between rs3093059 and co-morbidity was observed. However, SNP rs1205 CC genotype had an increased odds of co-morbidity compared with the TT genotype (odds ratio (OR):1.53; 95% confidence interval (CI): 1.16-2.02). Each additional copy of the C allele of SNP rs1205 was associated with 1.23 times (95% CI: 1.07-1.41) odds of co-morbidity. The significance remained after controlling for covariates such as education level, etc. CONCLUSIONS: among elderly Chinese individuals, two CRP gene polymorphisms were significantly associated with CRP levels. However, none of them was associated with frailty. The preliminary findings warrant further validations.


Assuntos
Envelhecimento/etnologia , Envelhecimento/genética , Proteína C-Reativa/genética , Comorbidade , Suscetibilidade a Doenças/etnologia , Idoso , Idoso de 80 Anos ou mais , Povo Asiático/genética , Proteína C-Reativa/metabolismo , China , Estudos de Coortes , Intervalos de Confiança , Feminino , Avaliação Geriátrica/métodos , Humanos , Longevidade/genética , Masculino , Razão de Chances , Polimorfismo de Nucleotídeo Único , Análise de Sobrevida
19.
Oncol Lett ; 10(2): 754-760, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26622565

RESUMO

It was originally thought that no single routine blood test result would be able to indicate whether or not a patient had cancer; however, several novel studies have indicated that the median survival and prognosis of cancer patients were markedly associated with the systemic circulation features of cancer patients. In addition, certain parameters, such as white blood cell (WBC) count, were largely altered in malignant tumors. In the present study, routine blood tests were performed in order to observe the change of blood cells in tumor-bearing mice following the implantation of 4T1 breast cancer cells into the mammary fat pad; in addition, blood flow in breast tumor sites was measured indirectly using laser Doppler perfusion imaging (LDPI), in an attempt to explain the relevance between the blood circulation features and the growth or metastasis of breast cancer in mice model. The LDPI and blood test results indicated that the implantation of 4T1 breast cancer cells into BALB/c mice led to thrombosis as well as high WBC count, high platelet count, high plateletcrit and low blood perfusion. Following implantation of the 4T1 cells for four weeks, the lung metastatic number was determined and the Pearson correlation coefficient revealed that the number of visceral lung metastatic sites had a marked negative association with the ratio of basophils (BASO%; r=-0.512; P<0.01) and the mean corpuscular hemoglobin was significantly correlated with primary tumor weight (r=0.425; P<0.05). In conclusion, the results of the present study demonstrated that tumor growth led to thrombosis and acute anemia in mice; in addition, when blood BASO% was low, an increased number of lung metastases were observed in tumor-bearing mice.

20.
Oncotarget ; 5(13): 5113-24, 2014 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-24970808

RESUMO

microRNAs, frequently deregulated in human cancer, have been implicated in the progression of hepatocarcinogenesis. Here, we show that microRNA (miR)-137 is significantly down-regulated in hepatocellular carcinoma (HCC). Its decreased expression is associated with vein invasion, incomplete Involucrum, and distant metastasis. Multivariate analysis suggests that miR-137 is an independent indicator for poor survival. We next show that over-expression of miR-137 suppresses cell proliferation, migration and invasion in vitro. Conversely, miR-137 inhibition promotes HCC cell growth. We also identify AKT2 as a key target of miR-137 in this context. Statistical data reveal a reverse correlation of AKT2 and miR-137 expression in HCC patients. Silencing of AKT2 phenotypically copied miR-137-induced phenotypes, whereas re-expression of AKT2 reversed the suppressive effects of miR-137. Further investigations showed that miR-137 exerted its anti-tumour activity via inhibiting the AKT2/mTOR pathway. Moreover, we demonstrate that FoxD3 directly binds to the promoter of miR-137 and activates its transcription. In vivo studies confirm that FoxD3-regulated miR-137 inhibited HCC growth and metastasis via targeting AKT2. Together, our findings indicate that miR-137 is a valuable biomarker for HCC prognosis and the FoxD3/miR-137/AKT2 regulatory network plays an important role in HCC progression.


Assuntos
Carcinoma Hepatocelular/genética , Fatores de Transcrição Forkhead/genética , Neoplasias Hepáticas/genética , MicroRNAs/genética , Proteínas Proto-Oncogênicas c-akt , Regiões 3' não Traduzidas/genética , Animais , Sequência de Bases , Western Blotting , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Movimento Celular/genética , Proliferação de Células , Feminino , Fatores de Transcrição Forkhead/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Masculino , Camundongos Endogâmicos BALB C , Camundongos Nus , Pessoa de Meia-Idade , Metástase Neoplásica , Prognóstico , Interferência de RNA , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Carga Tumoral/genética , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...