Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Langmuir ; 40(24): 12504-12511, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38836627

RESUMO

Solar-driven interfacial evaporation is a very promising choice for producing clean water. Despite the considerable investigation of pure NaCl brine purification, solar-driven complex water purification, such as real-world seawater desalination as well as domestic and industrial wastewater treatment, has rarely been investigated, mainly due to its compositions being much more complicated than NaCl brine. Herein, we developed a graphene oxide/aramid nanofiber (GO/ANFs) aerogel by a freeze-drying process. The GO/ANFs aerogel combined opened porous microchannels, superhydrophilicity, anti-oil-fouling capacity, enhanced broad-spectrum light absorption (more than 92%), and good solar/heat management. These integrated properties enabled the GO/ANFs aerogel to be an advanced solar interfacial evaporator for efficient freshwater production with the characteristics of localized heat conversion, quick water transport, and salt crystallization inhibition, and the rate of steam production rate was as high as 2.25 kg m-2 h-1 upon exposure to 1 solar irradiation. Importantly, the high-water-vapor generation rate was maintained even under complicated conditions, including real-world seawater, dye water, emulsions, and corrosive liquid environments. Considering its promising adaptability to a wide range of environments, this work hopes to inspire the development of brine desalination, wastewater purification, clean water production, and solar energy utilization.

2.
RSC Adv ; 14(14): 10131-10145, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38533095

RESUMO

Hydrophilic anti-fogging coatings have attracted considerable attention due to their ease of preparation and excellent fog resistance. In this study, a hydrophilic anti-fogging coating based on the random copolymer p(AA-co-SAS) was prepared using acrylic acid (AA) and sodium allylsulfonate (SAS) as monomers through radiation polymerization. The introduction of SAS successfully transformed the random copolymer from a gel state into a film-forming polymer solution. The presence of AA structural units in p(AA-co-SAS) improved the film-forming properties of the polymer solution. Additionally, there was a positive correlation between the proportion of SAS structural units in the random copolymer and the scratch hardness and wetting properties of the coating. After coating polycarbonate (PC) sheets, the surface hydrophilicity was significantly enhanced, with the contact angle of PC-AA10/SAS5 decreasing from 100.1° to 18.8° within 50 seconds. The outstanding wetting properties endowed the coating with exceptional anti-fogging and frost-resisting performance. It exhibited optimal transparency under both testing conditions and demonstrated good stability during cyclic testing. Tape adhesion tests indicated that the adhesion between the coating and PC reached a 5B level. When AA10/SAS5 was applied to PET film, glass, and PMMA goggles, all samples showed excellent anti-fog performance. Even after being naturally placed for one year under ambient conditions, the PMMA goggles still maintained good performance in the anti-fog and frost resistance tests. The remarkable comprehensive properties of the polymer coating based on p(AA-co-SAS) suggest enormous potential applications in industries such as packaging, healthcare, and optical equipment.

3.
RSC Adv ; 13(17): 11807-11816, 2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-37077991

RESUMO

4-Nitrophenol (4-NP) is a serious organic environmental pollutant. Conversion of 4-nitrophenol to 4-aminophenol (4-AP) by catalytic hydrogenation is an effective solution. In this work, a catalyst (AgNCs@CF-g-PAA) loaded with silver nanoclusters (AgNCs) was prepared by radiation technique. Firstly, the template polyacrylic acid (PAA) was grafted onto the cotton fiber (CF) by radiation grafting technique to obtain a solid template (CF-g-PAA). After that, AgNCs were synthesized in situ on CF-g-PAA by radiation reduction, and the composite material AgNCs@CF-g-PAA was obtained directly. AgNCs@CF-g-PAA has an obvious photoluminescence phenomenon, which is attributed to the stable AgNCs binding to the carboxyl on the PAA molecular chain. Due to the extremely small size of AgNCs, AgNCs@CF-g-PAA has good catalytic characteristics. The prepared AgNCs@CF-g-PAA catalyst has a very high catalytic rate for the hydrogenation of 4-NP. Even at high concentrations of 4-NP, AgNCs@CF-g-PAA can still maintain a high catalytic rate. At the same time, the AgNCs@CF-g-PAA catalyst can also be used to catalyze the rapid hydrolysis of sodium borohydride, which is conducive to hydrogen production. In summary, we have prepared a practical catalyst AgNCs@CF-g-PAA with high catalytic performance based on cheap raw materials and a simple synthesis route, which provides a catalyst candidate for the treatment of water contaminant 4-NP and the production of hydrogen from sodium borohydride.

4.
RSC Adv ; 13(3): 1853-1861, 2023 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-36712605

RESUMO

Textiles modified with antimicrobial nanomaterials have excellent comprehensive performance. However, the shedding of nanoparticles often occurs in actual use. This not only reduces the service life of antimicrobial textiles, but also causes potential harm. Here, we report a new method to covalently immobilize a zinc-imidazolate MOF (ZIF-8) onto cotton fabric by electron beam irradiation to prepare antimicrobial textiles with excellent durability. A series of characterization analysis showed the electron beam irradiation did not damage the structure of the ZIF-8 nanoparticles and the particles were successfully introduced onto cotton fibers via poly hydroxyethyl acrylate (PHEA). The modified cotton fabric exhibited >99% inhibition of Escherichia coli, Staphylococcus aureus and Candida albicans. The results of dry cleaning and rub resistance tests showed that the prepared antimicrobial cotton fabric had significant durability which was attributed to the strong covalent binding between the MOF and textile.

5.
J Hazard Mater ; 446: 130695, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36587593

RESUMO

Nitrogen (N) loss during composting reduces the quality of compost products and causes secondary environmental pollution. Phthalate esters (PAEs) are common pollutants in agricultural wastes. However, little information is currently available on how PAEs affect N conversion during agricultural waste composting. This research systematically analyzed the impact of di-n-butyl phthalate (DBP) pollution on the N conversion and its related microbial community during composting. Our results indicated that DBP stress results in a shorter thermophilic phase, and then slower compost maturation during composting. Notably, DBP stress inhibited the conversion of ammonia to nitrate, but increased the release of NH3 and N2O leading to an increased N loss and an elevated greenhouse effect. Furthermore, DBP exposure led to a reduction of bacteria related to NH4+ and NO3- conversion and altered the network complexity of the bacterial community involved in N conversion. It also reduced the abundance of a major nitrification gene (amoA) (P < 0.01) and increased the abundance of denitrification genes (nirK and norB) (P < 0.05). Moreover, DBP affected the overall microbial community composition at all tested concentrations. These findings provide theoretical and methodological basis for improving the quality of PAE-contaminated agricultural waste compost products and reducing secondary environmental pollution.


Assuntos
Compostagem , Dibutilftalato , Compostagem/métodos , Nitrogênio , Solo , Bactérias/genética
6.
RSC Adv ; 12(51): 33207-33214, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36425166

RESUMO

In our work, a simple and fast synthesis method is provided to synthesize silver nanoclusters (AgNCs). In this method, with using polyacrylic acid (PAA) as a template, the silver ions were reduced to silver nanoclusters by irradiation reduction at room temperature. The prepared silver nanoclusters (PAA-AgNCs) with average particle size of 1.98 ± 0.79 nm have a fluorescence property, and their physical and chemical properties can be controlled by absorbed dose, PAA/Ag+ mole ratio and other factors. The fluorescence stability of the PAA-AgNCs is good, and it is unique in that the fluorescence emission of the s PAA-AgNCs depends on the excitation wavelength. In addition, based on the fluorescence quenching phenomenon of PAA-AgNCs in the presence of Cr3+ ion, we established a simple and efficient method for the detection of Cr3+ ion by using PAA-AgNCs as fluorescent probes.

7.
Transl Cancer Res ; 11(4): 805-812, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35571647

RESUMO

Background: Glioma is a common primary craniocerebral malignant tumor, due to the lack of specificity of imaging examination and clinical manifestations, its diagnostic accuracy is relatively low, which may result in misdiagnosis and missed diagnosis. The apparent diffusion coefficient (ADC) in magnetic resonance diffusion weighted imaging (DWI) can reflect the histological characteristics of gliomas, which can be widely applied to classify gliomas and evaluate the extent of metastasis of glioma. The present study aimed to assess the clinical value of magnetic resonance DWI in the pathological grading of glioma and its therapeutic application in clinical surgery. Methods: This article retrospectively analyzed the clinical data of 41 patients with glioma confirmed by surgical pathology results from January 1, 2019 to March 31, 2020 in the People's Hospital of Gaozhou. Among them, 16 patients had low-grade gliomas [World Health Organization (WHO) grade I-II] and 25 patients had high-grade gliomas (WHO grade III-IV). They were subjected to conventional T1WI and T2WI plain scans, along with DWI and enhanced scans before surgery. The ADC values of the glioma parenchyma, the peritumoral edema area, the surrounding white matter, and the contralateral normal white matter were measured. We selected some tumor tissues for pathological analysis as well, and conducted pathological grading according to WHO grading standards. Results: We compared and evaluated the ADC values of the observed areas for low-grade gliomas and high-grade gliomas. The ADC values of low-grade gliomas in the tumor parenchyma, peritumoral edema, and white matter around the edema area were significantly lower than those of high-grade gliomas, and the differences were statistically significant (P<0.05). The difference in ADC values of normal white matter between the two groups of patients was not statistically significant (P=0.125). Conclusions: DWI has prognostic predictive value in the preoperative differential diagnosis and pathological classification of gliomas. This advanced technology can verify the extent of glioma infiltration in the surrounding brain tissue. It can help clinicians formulate a safer and more effective therapeutic strategy by providing accurate information on prognostic evaluation before the successful surgical intervention of gliomas.

8.
Cell Tissue Res ; 383(2): 693-706, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32897418

RESUMO

NCAPG2 (non-SMC condensin II complex subunit G2), as an important factor in cell mitosis, has been the focus in the study of different cancers. However, the role of NCAPG2 in the malignancy of glioblastoma cells remains unknown. The findings from the present study demonstrated that NCAPG2 was significantly increased in human glioblastoma tissues and was associated with poor clinical outcome. Moreover, NCAPG2 could promote proliferation, migration, and invasion and regulate cell cycle in glioblastoma cells. Investigation of the molecular mechanism indicated that NCAPG2 regulated HBO1 phosphorylation and H4 histone acetylase activation, modulated the activation of Wnt/ß-catenin pathway, and the binding of MCM protein to chromatin to exert its role. Furthermore, knockdown of HBO1 was found to reverse the effect of NCAPG2 overexpression on cell proliferation, migration, invasion, and cell cycle. In addition, knockdown of NCAPG2 attenuated glioblastoma tumorigenesis in vivo. Taken together, the findings demonstrated that NCAPG2 facilitates the malignancy of glioblastoma cells and xenograft tumor growth via HBO1 activation by phosphorylation. These results improve our understanding of the mechanism underlying glioblastoma progression and may contribute to the identification of novel biomarkers and therapeutic targets for glioblastoma.


Assuntos
Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Proteínas Cromossômicas não Histona/metabolismo , Glioblastoma/metabolismo , Glioblastoma/patologia , Histona Acetiltransferases/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto , Animais , Neoplasias Encefálicas/genética , Carcinogênese/metabolismo , Carcinogênese/patologia , Ciclo Celular/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Cromatina/metabolismo , Proteínas Cromossômicas não Histona/genética , Regulação Neoplásica da Expressão Gênica , Glioblastoma/genética , Humanos , Masculino , Camundongos Endogâmicos BALB C , Camundongos Nus , Pessoa de Meia-Idade , Proteínas de Manutenção de Minicromossomo/metabolismo , Invasividade Neoplásica , Fosforilação , Ligação Proteica , Resultado do Tratamento , Via de Sinalização Wnt
9.
Nanotechnology ; 31(23): 235604, 2020 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-32106098

RESUMO

Graphene oxide (GO) and gold ions (Au3+) can be simultaneously reduced and self-assembled into a three-dimensional (3D) graphene/Au composite (GA/Au) porous structure at room temperature via one-step γ-ray irradiation. The microstructure of GA/Au composites were observed under different magnifications and the pores were observed to be uniform 3D porous structure. In addition, Au nanoparticles were homogeneously attached to graphene sheets and had a typical diameter of 6 nm. These GA/Au composites were analyzed and characterized by x-ray diffraction analysis, x-ray photoelectron spectroscopy, and thermal gravity analysis. Due to synergistic catalysis between graphene and Au nanoparticles, GA/Au composites catalyzed 4-nitrophenol with excellent catalytic performance, even at concentrations up to 6.48 × 10-3 M. When the concentration of 4-nitrophenol was 2.16 × 10-3 M and 4.22 × 10-3 M, the first-order kinetic constants were 2.00 and 1.43 min-1, respectively.

10.
Chem Sci ; 12(5): 1907-1914, 2020 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-34163954

RESUMO

On-demand electrospray ionization from different liquid channels in the same emitter was realized using filamented capillary and gas phase charge supply. The solution sub-channel was formed when back-filling solution to the emitter tip by capillary action along the filament. Gas phase charge carriers were used to trigger electrospray ionization from the solution meniscus at the tip. The meniscus at the tip opening may be fully filled or partially empty to generate electrospray ionization in main-channel regime and sub-channel regime, respectively. For emitters with 4 µm tip opening, the two nested electrospray (nested-ESI) channels accommodated ESI flow rates ranging from 50 pL min-1 to 150 nL min-1. The platform enabled on-demand regime alternations within one sample run, in which the sub-channel regime generated smaller charged droplets. Ionization efficiencies for saccharides, glycopeptide, and proteins were enhanced in the sub-channel regime. Non-specific salt adducts were reduced and identified by regime alternation. Surprisingly, the sub-channel regime produced more uniform responses for a peptide mixture whose relative ionization efficiencies were insensitive to ESI conditions in previous picoelectrospray study. The nested channels also allowed effective washing of emitter tip for multiple sampling and analysis operations.

11.
Cancer Med ; 9(17): 6387-6398, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-33448691

RESUMO

Mounting literatures have revealed the crucial effects of long noncoding RNA (lncRNA) in various cancers, including glioma. HNF1A-AS1, a novel lncRNA, is reported to modulate tumorigenesis and development of multiple cancers. However, the tumorigenic function of lncRNA HNF1A-AS1 in glioma remains largely unknown. quantitative reverse transcription and polymerase chain reaction and western blot assays were applied to evaluate the expression of relevant mRNAs and proteins. 5-Ethynyl-2'- deoxyuridine, terminal deoxynucleotidyl transferase dUTP nick-end labeling, flow cytometry, and transwell assays were conducted for examining the influence of HNF1A-AS1 on glioma cell functions. The relationship among RNAs was investigated by mechanical experiments. The results demonstrated that HNF1A-AS1 was predominantly highly expressed in glioma cell lines compared with nontumor glial epithelial cell, which was associated with the stimulation of transcription factor myelocytomatosis oncogene. Knockdown of HNF1A-AS1 remarkably inhibited glioma cells proliferation, migration, and invasion, while accelerating cell apoptosis in vitro. Mechanically, HNF1A-AS1 served as a miR-32-5p sponge. Moreover, SOX4 was discovered as a target of miR-32-5p. Inhibited miR-32-5p or upregulated SOX4 could markedly counteract the inhibitory effects of silencing HNF1A-AS1 on glioma malignant biological behaviors. HNF1A-AS1 exerted oncogenic property in glioma progression via upregulating miR-32-5p-mediated SOX4 expression, suggesting potential novel therapeutic target for future glioma treatment.


Assuntos
Neoplasias Encefálicas/metabolismo , Glioma/metabolismo , MicroRNAs/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , RNA Longo não Codificante/metabolismo , Fatores de Transcrição SOXC/metabolismo , Animais , Apoptose , Neoplasias Encefálicas/etiologia , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , DNA Nucleotidilexotransferase , Desoxiuridina/análogos & derivados , Progressão da Doença , Citometria de Fluxo , Inativação Gênica , Glioma/etiologia , Glioma/patologia , Humanos , Marcação In Situ das Extremidades Cortadas , Masculino , Camundongos , Camundongos Nus , Proteínas de Neoplasias/metabolismo , RNA Longo não Codificante/genética , Fatores de Transcrição/metabolismo
12.
Int J Oncol ; 49(6): 2471-2479, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27748795

RESUMO

Aberrant expression of oncogenes and/or tumor suppressors play fundamental roles in the pathogenesis of glioma. B-cell CLL/lymphoma 3 (BCL3) was previously found to be a putative proto-oncogene in human cancers and the decoy receptor DcR1 is induced in a p50/Bcl3-dependent manner and attenuates the efficacy of temozolomide in glioblastoma cells. However, its expression status, clinical significance and biological functions in glioma remain largely unknown. In the present study, the levels of BCL3 were overexpressed in glioma compared to normal brain tissues. Furthermore, high expression of BCL3 protein was confirmed by immunoblotting in glioma cells as compared with normal human astrocyte cell line. The positive expression of BCL3 was correlated with adverse prognostic features and reduced overall survival rate of glioma patients. BCL3 silencing resulted in prominent decreased proliferation, cell cycle arrest in G1 phase and increased apoptosis in U251 cells. In contrast, BCL3 overexpression in U87 cells remarkably facilitated proliferative ability and cell cycle progression and induced apoptosis. In vivo studies showed that BCL3 knockdown inhibited the tumor growth of U251 cells in a mouse xenograft model. Mechanistically, BCL3 positively regulated the abundance of STAT3, p-STAT3 and the downstream targets of STAT3 pathway including BCL2, MCL-1 and cyclin D1 in glioma cells. Furthermore, a positive correlation between BCL3 and STAT3 expression was observed in glioma specimens. Notably, we confirmed that STAT3 knockdown abolished the oncogenic roles of BCL3 in glioma. In conclusion, we suggest that BCL3 serves as an oncogene in glioma by modulating proliferation, cell cycle progression and apoptosis, and its oncogenic effects are mediated by the STAT3 signaling pathway.


Assuntos
Apoptose/genética , Astrócitos/metabolismo , Proliferação de Células/genética , Pontos de Checagem da Fase G1 do Ciclo Celular/genética , Glioma/patologia , Proteínas Proto-Oncogênicas/genética , Fator de Transcrição STAT3/genética , Fatores de Transcrição/genética , Proteína 3 do Linfoma de Células B , Encéfalo/metabolismo , Encéfalo/patologia , Linhagem Celular Tumoral , Ciclina D1/metabolismo , Progressão da Doença , Feminino , Regulação Neoplásica da Expressão Gênica , Glioma/genética , Humanos , Masculino , Pessoa de Meia-Idade , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Proto-Oncogene Mas , Proteínas Proto-Oncogênicas/biossíntese , Interferência de RNA , RNA Interferente Pequeno/genética , Fator de Transcrição STAT3/biossíntese , Taxa de Sobrevida , Fatores de Transcrição/biossíntese , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
13.
Sci Rep ; 6: 22796, 2016 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-26948405

RESUMO

The prevention of refractory organic pollution caused by conventional dyeing and the development of new fabrics with various functions are two issues to be solved urgently in the field of textile fabrication. Here, we report a new environmentally friendly route for the simultaneous coloration and functionalization of textiles by the covalent immobilization of a metal-organic framework, Cr-based MIL-101(Cr), onto the surfaces of nylon fabrics by co-graft polymerization with 2-hydroxyethyl acrylate initiated by γ-ray irradiation. The Cr(III) clusters color the nylon fabric, and the color intensity varies with the MIL-101 content, providing a "green" textile coloration method that is different from conventional dyeing processes. An X-ray diffraction (XRD) analysis shows that the nanoporous structure of the original MIL-101 particles is retained during radiation-induced graft polymerization. Numerous nanopores are introduced onto the surface of the nylon fabric, which demonstrated better sustained-release-of-aroma performance versus pristine nylon fabric in tests. The modified fabrics exhibit laundering durability, with MIL-101 nanoparticles intact on the nylon surface after 30 h of dry cleaning.

14.
ACS Appl Mater Interfaces ; 7(32): 17558-64, 2015 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-26226281

RESUMO

Herein, we first reported a facile strategy to prepare functional Poly(vinyl alcohol) (PVA) hybrid film with well ultraviolet (UV) shielding property and visible light transmittance using graphene oxide nanosheets as UV-absorber. The absorbance of ultraviolet light at 300 nm can be up to 97.5%, while the transmittance of visible light at 500 nm keeps 40% plus. This hybrid film can protect protein from UVA light induced photosensitive damage, remarkably.


Assuntos
Grafite/química , Nanoestruturas/química , Protetores Solares/química , Raios Ultravioleta , Eletroforese em Gel de Poliacrilamida , Muramidase/química , Muramidase/metabolismo , Óxidos/química , Álcool de Polivinil/química , Espectrofotometria Ultravioleta
15.
Sci Rep ; 5: 11255, 2015 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-26066704

RESUMO

There is growing interest in the area of conductive textiles in the scientific and industrial community. Herein, we successfully prepared a conductive textile via covalently grafting polyaniline (PANI) onto cotton by a multi-step treatment process. The conductivity of the resultant fabric could be tuned by immersing in water having different pH values. The conductive and insulating properties of the textile could be conveniently switched by alternately immersing in acidic and alkaline bath solutions. Most importantly, the resultant conductive fabrics were able to withstand 40 simulated dry-wash cycles, with almost no decay in the electrical conductivity, indicating their excellent dry-wash durability. The present strategy for fabricating conductive fabrics with excellent switchability of electrical properties and dry-wash durability is expected to provide inspiration for the production of multifunctional conductive textiles for use in hash or sensitive conditions.

16.
Analyst ; 139(19): 4779-84, 2014 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-25096725

RESUMO

Tandem mass spectrometry (MS/MS) plays an essential role in modern chemical analysis. It is used for differentiating isomers and isobars and suppressing chemical noise, which allows high precision quantitation. The MS/MS analysis has been typically applied by isolating the target precursor ions, while disregarding other ions, followed by a fragmentation process that produces the product ions. In this study, configurations of dual linear ion traps were explored to develop high efficiency MS/MS analysis. The ions trapped in the first linear ion trap were axially, mass-selectively transferred to the second linear ion trap for MS/MS analysis. Ions from multiple compounds simultaneously introduced into the mass spectrometer could be sequentially analyzed. This development enables highly efficient use of the sample. For miniature ion trap mass spectrometers with discontinuous atmospheric pressure interfaces, the analysis speed and the quantitation precision can be significantly improved.


Assuntos
Espectrometria de Massas em Tandem/instrumentação , Amitriptilina/química , Pressão Atmosférica , Cocaína/análise , Íons/química , Metanfetamina/análise , Peso Molecular
17.
Anal Chem ; 86(9): 4102-9, 2014 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-24758328

RESUMO

In this study, the concept of ion sponge has been explored for developing 3D arrays of large numbers of ion traps but with simple configurations. An ion sponge device with 484 trapping units in a volume of 10 × 10 × 3.2 cm has been constructed by simply stacking 9 meshes together. A single rf was used for trapping ions and mass-selective ion processing. The ion sponge provides a large trapping capacity and is highly transparent for transfer of ions, neutrals, and photons for gas phase ion processing. Multiple layers of quadrupole ion traps, with 121 trapping units in each layer, can operate as a single device for MS or MS/MS analysis, or as a series of mass-selective trapping devices with interlayer ion transfers facilitated by AC and DC voltages. Automatic sorting of ions to different trapping layers based on their mass-to-charge (m/z) ratios was achieved with traps of different sizes. Tandem-in-space MS/MS has also been demonstrated with precursor ions and fragment ions trapped in separate locations.


Assuntos
Gases/química , Espectrometria de Massas/métodos , Íons
18.
Anal Chem ; 86(6): 2909-16, 2014 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-24521423

RESUMO

A benchtop miniature mass spectrometer system, Mini 12, with ambient ionization source and tandem mass spectrometry capabilities has been developed and characterized. This instrument was developed as a self-contained system to produce quantitative results for unprocessed samples of small volumes including nonvolatile analytes. The ion processing system, vacuum system, and control system are detailed. An integrated sample loading system facilitates automated operation. A user interface has been developed to acquire and to interpret analytical results for personnel who have limited mass spectrometry knowledge. Peak widths of Δm/z 0.6 Th (full width at half-maximum) and a mass range of up to m/z 900 are demonstrated with the rectilinear ion trap mass analyzer. Multistage experiments up to MS(5) are accomplished. Consumable cartridges have been designed for use in ambient paper spray ionization, and the recently developed extraction spray ionization method has been employed to improve the quantitative performance. Monitoring of trace-levels of chemicals in therapeutic drugs, as well as in food safety and environmental protection operations is demonstrated. Dual MS/MS scans are implemented to obtain the intensities of the fragment ions from the analyte and its internal standard, and the ratio is used in quantitative analysis of complex samples. Limits of quantitation (LOQ) of 7.5 ng/mL, with relative standard deviations below 10%, have been obtained for selected therapeutic drugs in whole blood throughout their individual therapeutic ranges.


Assuntos
Espectrometria de Massas/métodos , Miniaturização , Limite de Detecção
19.
Anal Chem ; 86(6): 2900-8, 2014 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-24521448

RESUMO

A major design objective of portable mass spectrometers is the ability to perform in situ chemical analysis on target samples in their native states in the undisturbed environment. The miniature instrument described here is fully contained in a wearable backpack (10 kg) with a geometry-independent low-temperature plasma (LTP) ion source integrated into a hand-held head unit (2 kg) to allow direct surface sampling and analysis. Detection of chemical warfare agent (CWA) simulants, illicit drugs, and explosives is demonstrated at nanogram levels directly from surfaces in near real time including those that have complex geometries, those that are heat-sensitive, and those bearing complex sample matrices. The instrument consumes an average of 65 W of power and can be operated autonomously under battery power for ca. 1.5 h, including the initial pump-down of the manifold. The maximum mass-to-charge ratio is 925 Th with mass resolution of 1-2 amu full width at half-maximun (fwhm) across the mass range. Multiple stages of tandem analysis can be performed to identify individual compounds in complex mixtures. Both positive and negative ion modes are available. A graphical user interface (GUI) is available for novice users to facilitate data acquisition and real-time spectral matching.


Assuntos
Espectrometria de Massas/métodos , Miniaturização , Software , Interface Usuário-Computador
20.
J Am Soc Mass Spectrom ; 25(1): 48-56, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24150848

RESUMO

The discontinuous atmospheric pressure interface (DAPI) has been developed as a facile means for efficiently introducing ions generated at atmospheric pressure to an ion trap in vacuum [e.g., a rectilinear ion trap (RIT)] for mass analysis. Introduction of multiple beams of ions or neutral species through two DAPIs into a single RIT has been previously demonstrated. In this study, a home-built instrument with a DAPI-RIT-DAPI configuration has been characterized for the study of gas-phase ion/molecule and ion/ion reactions. The reaction species, including ions or neutrals, can be introduced from both ends of the RIT through the two DAPIs without complicated ion optics or differential pumping stages. The primary reactant ions were isolated prior to reaction and the product ions were mass analyzed after controlled reaction time period. Ion/molecule reactions involving peptide radical ions and proton-transfer ion/ion reactions have been carried out using this instrument. The gas dynamic effect due to the DAPI operation on internal energy deposition and the reactivity of peptide radical ions has been characterized. The DAPI-RIT-DAPI system also has a unique feature for allowing the ion reactions to be carried out at significantly elevated pressures (in 10(-1) Torr range), which has been found to be helpful to speed up the reactions. The viability and flexibility of the DAPI-RIT-DAPI system for the study of gas-phase ion reactions have been demonstrated.


Assuntos
Gases/química , Íons/química , Espectrometria de Massas/instrumentação , Desenho de Equipamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...