Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 13(13)2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38999613

RESUMO

Creeping bentgrass (Agrostis stolonifera) is an excellent cool-season turfgrass that is widely used in urban gardening, landscaping, and golf turf. Triennial field experiments from 2017 to 2019 were conducted to investigate effects of the foliar application of chitosan (CTS), γ-aminobutyric acid (GABA), or sodium chloride (NaCl) on mitigating summer bentgrass decline (SBD) and exploring the CTS, GABA, or NaCl regulatory mechanism of tolerance to summer heat stress associated with changes in chlorophyll (Chl) loss and photosynthetic capacity, osmotic adjustment (OA), oxidative damage, and cell membrane stability. The findings demonstrated that persistent ambient high temperatures above 30 °C during the summer months of 2017, 2018, and 2019 significantly reduced the turf quality (TQ), Chl content, photochemical efficiency of PSII (Fv/Fm and PIABS), leaf relative water content, and osmotic potential (OP) but significantly increased electrolyte leakage (EL) and the accumulations of free proline, water-soluble carbohydrate (WSC), hydrogen peroxide (H2O2), and malondialdehyde (MDA). The foliar application of CTS, GABA, or NaCl could significantly alleviate SBD, as reflected by improved TQ and delayed Chl loss during hot summer months. Heat-induced declines in Fv/Fm, PIABS, the net photosynthetic rate (Pn), the transpiration rate (Tr), and water use efficiency (WUE) could be significantly mitigated by the exogenous application of CTS, GABA, or NaCl. In addition, the foliar application of CTS, GABA, or NaCl also significantly improved the accumulations of free proline and WSC but reduced the EL, OP, and H2O2 content and the MDA content in leaves of creeping bentgrass in favor of water and redox homeostasis in summer. Based on the comprehensive evaluation of the subordinate function value analysis (SFVA), the CTS had the best effect on the mitigation of SBD, followed by GABA and NaCl in 2017, 2018, and 2019. The current study indicates that the foliar application of an appropriate dose of GABA, CTS, or NaCl provides a cost-effective strategy for mitigating SBD.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38507377

RESUMO

Time-varying linear equations (TVLEs) play a fundamental role in the engineering field and are of great practical value. Existing methods for the TVLE still have issues with long computation time and insufficient noise resistance. Zeroing neural network (ZNN) with parallel distribution and interference tolerance traits can mitigate these deficiencies and thus are good candidates for the TVLE. Therefore, a new predefined-time adaptive ZNN (PTAZNN) model is proposed for addressing the TVLE in this article. Unlike previous ZNN models with time-varying parameters, the PTAZNN model adopts a novel error-based adaptive parameter, which makes the convergence process more rapid and avoids unnecessary waste of computational resources caused by large parameters. Moreover, the stability, convergence, and robustness of the PTAZNN model are rigorously analyzed. Two numerical examples reflect that the PTAZNN model possesses shorter convergence time and better robustness compared with several variable-parameter ZNN models. In addition, the PTAZNN model is applied to solve the inverse kinematic solution of UR 5 robot on the simulation platform CoppeliaSim, and the results further indicate the feasibility of this model intuitively.

3.
IEEE Trans Cybern ; PP2022 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-37015357

RESUMO

Zeroing neural network (ZNN) can effectively solve the matrix flows inversion problem. Nevertheless, quite a few related research works focus on the improvement of the convergence and robustness performance of the ZNN models and ignore the conservatism of their predefined time. Therefore, this article adopts a polymorphous activation function (PAF) to construct a new predefined time ZNN (NPTZNN) model. The second method of Lyapunov is utilized to analyze the stability, convergence, and robustness of the NPTZNN model. The Beta function is dexterously employed in the process of calculating the predefined time of the NPTZNN model, reducing its conservatism. Furthermore, the correctness of the theoretical analyses is verified by numerous experiments. Finally, the NPTZNN model is applied to robot manipulator control and can improve the tracking speed, extending the applicability of the model.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...