Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cereb Cortex ; 34(2)2024 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-38216542

RESUMO

The mutual interaction between bone characteristics and brain had been reported previously, yet whether the cortical structure has any relevance to osteoporosis is questionable. Therefore, we applied a two-sample bidirectional Mendelian randomization analysis to investigate this relationship. We utilized the bone mineral density measurements of femoral neck (n = 32,735) and lumbar spine (n = 28,498) and data on osteoporosis (7300 cases and 358,014 controls). The global surficial area and thickness and 34 specific functional regions of 51,665 patients were screened by magnetic resonance imaging. For the primary estimate, we utilized the inverse-variance weighted method. The Mendelian randomization-Egger intercept test, MR-PRESSO, Cochran's Q test, and "leave-one-out" sensitivity analysis were conducted to assess heterogeneity and pleiotropy. We observed suggestive associations between decreased thickness in the precentral region (OR = 0.034, P = 0.003) and increased chance of having osteoporosis. The results also revealed suggestive causality of decreased bone mineral density in femoral neck to declined total cortical surface area (ß = 1400.230 mm2, P = 0.003), as well as the vulnerability to osteoporosis and reduced thickness in the Parstriangularis region (ß = -0.006 mm, P = 0.002). Our study supports that the brain and skeleton exhibit bidirectional crosstalk, indicating the presence of a mutual brain-bone interaction.


Assuntos
Análise da Randomização Mendeliana , Osteoporose , Humanos , Osteoporose/diagnóstico por imagem , Osteoporose/genética , Encéfalo , Nonoxinol , Compostos Radiofarmacêuticos , Estudo de Associação Genômica Ampla
2.
J Thorac Dis ; 13(5): 3105-3114, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34164201

RESUMO

BACKGROUND: Circulating microRNAs (miRNAs) have emerged as potential biomarkers for cardiovascular diseases. However, few studies have focused on the role of exosomal miRNAs in acute coronary syndrome (ACS). The purpose of this study was to explore weather serum exosomal microRNA-146a (exo-miR-146a) could be used as a novel diagnostic biomarker for ACS and to investigate its relationship with inflammatory response. METHODS: A total of 63 ACS patients and 25 patients with normal coronary arteries (Control) were enrolled respectively. The serum exosomes were isolated and then identified by transmission electron microscopy (TEM), western blot, and nanoparticle tracking analysis (NTA). The expression levels of exo-miR-146a in serum were detected by real-time quantitative polymerase chain reaction (RT-qPCR) and the expression levels of interleukin-1ß (IL-1ß), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α) in serum were assessed by enzyme-linked immunosorbent assay (ELISA). Spearman's correlation analysis was used to appraise the potential factors related to serum exo-miR-146a and receiver operating characteristic (ROC) curve analysis was applied for predicting the accuracy of ACS via the area under curve (AUC). RESULTS: Exosomes isolated from serum were of typical cup-like shape, with 50-150 nm diameter, and expressed CD9, CD63, CD81, and HSP70. The expression levels of serum exo-miR-146a, IL-1ß, IL-6, and TNF-α were significantly increased in ACS patients compared with the control group, Spearman's correlation analysis indicated that exo-miR-146a expression was markedly positively correlated with IL-1ß, IL-6, and TNF-α. The ROC curve analyses revealed that exo-miR-146a could distinguish ACS patients from their normal controls. CONCLUSIONS: The serum exo-miR-146a may be used as a novel diagnostic biomarker for ACS patients, and it is also associated with inflammatory response.

3.
Comput Biol Chem ; 67: 141-149, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28095341

RESUMO

Pyrroline-5-carboxylate reductase (P5CR), an enzyme with conserved housekeeping roles, is involved in the etiology of cutis laxa. While previous work has shown that the R119G point mutation in the P5CR protein is involved, the structural mechanism behind the pathology remains to be elucidated. In order to probe the role of the R119G mutation in cutis laxa, we performed molecular dynamics (MD) simulations, essential dynamics (ED) analysis, and Molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) binding free energy calculations on wild type (WT) and mutant P5CR-NAD complex. These MD simulations and ED analyses suggest that the R119G mutation decreases the flexibility of P5CR, specifically in the substrate binding pocket, which could decrease the kinetics of the cofactor entrance and egress. Furthermore, the MM-PBSA calculations suggest the R119G mutant has a lower cofactor binding affinity for NAD than WT. Our study provides insight into the possible role of the R119G mutation during interactions between P5CR and NAD, thus bettering our understanding of how the mutation promotes cutis laxa.


Assuntos
Cútis Laxa/etiologia , NAD/metabolismo , Mutação Puntual , Pirrolina Carboxilato Redutases/metabolismo , Arginina/genética , Catálise , Transferência de Energia , Glicina/genética , Humanos , Cinética , Simulação de Dinâmica Molecular , NAD/química , Ligação Proteica , Pirrolina Carboxilato Redutases/química , Pirrolina Carboxilato Redutases/genética , delta-1-Pirrolina-5-Carboxilato Redutase
4.
Sheng Li Xue Bao ; 68(2): 148-56, 2016 Apr 25.
Artigo em Chinês | MEDLINE | ID: mdl-27108901

RESUMO

The aim of the present study was to investigate the effects of minocycline on cognitive functions in neonatal rat after hypoxia exposure and the underlying mechanism. A model of hypoxic brain damage (HBD) was developed by exposing postnatal 1 day (P1) rats to systemic hypoxia. The rats were intraperitoneally injected with normal saline (Hy group) or minocycline (Hy + M group) 2 h after hypoxia exposure. Some other P1 rats that were not subjected to systemic hypoxia were used as normal control (NG group). The Y-maze test was used to evaluate learning and memory ability on postnatal day 30. Inflammatory mediators (Iba-1, IL-1ß, TNF-α and TGF-ß1), glutamate transporters (EAAT1 and EAAT2), total Tau and phosphorylated Tau (phosphorylation sites: Tyr18, Thr205, Thr231, Ser396 and Ser404) protein expressions in the hippocampus were detected by Western blot 7 d after hypoxic exposure. The results showed that hypoxia induced learning and memory impairments of the neonatal rats, and minocycline administration could reverse the effects of hypoxia. The protein expression levels of Iba-1, IL-1ß, TNF-α, EAAT2 and Tau phosphorylated at T231 were increased, but the total Tau expression was decreased in the hippocampus of the rats from Hy group 7 d after hypoxia exposure. In the hypoxia-treated rats, minocycline down-regulated Iba-1, IL-1ß, TNF-α and EAAT2 protein expressions significantly, but did not affect total Tau and phosphorylated Tau protein expressions. Our results suggest that minocycline can prevent cognitive deficits of rats with hypoxia exposure, and the underlying mechanism may involve the inhibition of neuroinflammation and dysfunctional glutamate transporters but not the regulation of the Tau hyperphosphorylation.


Assuntos
Cognição , Hipóxia , Sistema X-AG de Transporte de Aminoácidos , Animais , Animais Recém-Nascidos , Transtornos Cognitivos , Modelos Animais de Doenças , Glutamatos , Hipocampo , Inflamação , Aprendizagem , Memória , Transtornos da Memória , Minociclina , Fosforilação , Ratos , Fator de Crescimento Transformador beta1 , Fator de Necrose Tumoral alfa , Proteínas tau
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...