Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
iScience ; 27(3): 109112, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38380247

RESUMO

The evolutionary mechanism behind the early Cambrian animal skeletonization was a complex and multifaceted process involving environmental, ecological, and biological factors. Predation pressure, oxygenation, and seawater chemistry change have frequently been proposed as the main drivers of this biological innovation, yet the selection pressures from microorganisms have been largely overlooked. Here we present evidence that calcareous shells of the earliest mollusks from the basal Cambrian (Fortunian Age, ca. 539-529 million years ago) of Mongolia developed advanced tubule systems that evolved primarily as a defensive strategy against extensive microbial attacks within a microbe-dominated marine ecosystem. These high-density tubules, comprising approximately 35% of shell volume, enable nascent mineralized mollusks to cope with increasing microbial bioerosion caused by boring endolithic cyanobacteria, and hence represent an innovation in shell calcification. Our finding demonstrates that enhanced microboring pressures played a significant role in shaping the calcification of the earliest mineralized mollusks during the Cambrian Explosion.

2.
Biology (Basel) ; 12(1)2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36671805

RESUMO

The Precambrian-Cambrian interval saw the first appearance of disparate modern metazoan phyla equipped with a wide array of mineralized exo- and endo-skeletons. However, the current knowledge of this remarkable metazoan skeletonization bio-event and its environmental interactions is limited because uncertainties have persisted in determining the mineralogy, microstructure, and hierarchical complexity of these earliest animal skeletons. This study characterizes in detail a previously poorly understood fibrous microstructure-the lamello-fibrillar (LF) nacre-in early Cambrian mollusk and hyolith shells and compares it with shell microstructures in modern counterparts (coleoid cuttlebones and serpulid tubes). This comparative study highlights key differences in the LF nacre amongst different lophotrochozoan groups in terms of mineralogical compositions and architectural organization of crystals. The results demonstrate that the LF nacre is a microstructural motif confined to the Mollusca. This study demonstrates that similar fibrous microstructure in Cambrian mollusks and hyoliths actually represent a primitive type of prismatic microstructure constituted of calcitic prisms. Revision of these fibrous microstructures in Cambrian fossils demonstrates that calcitic shells are prevalent in the so-called aragonite sea of the earliest Cambrian. This has important implications for understanding the relationship between seawater chemistry and skeletal mineralogy at the time when skeletons were first acquired by early lophotrochozoan biomineralizers.

3.
Proc Biol Sci ; 289(1976): 20220804, 2022 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-35703053

RESUMO

Sponge fossils from the Cambrian black shales have attracted attention from both palaeontologists and geochemists for many years in terms of their high diversity, beautiful preservation and perplexing adaptation to inhospitable living environments. However, the body shape of these sponges, which contributes to deciphering adaptive evolution, has not been scrutinized. New complete specimens of the hexactinellid sponge Sanshapentella tentoriformis sp. nov. from the Qingjiang biota (black shale of the Cambrian Stage 3 Shuijingtuo Formation, ca 518 Ma) allow recognition of a unique dendriform body characterized by a columnar trunk with multiple conical high peaks and distinctive quadripod-shaped dermal spicules that frame each high peak. The body shape of this new sponge along with other early Cambrian hexactinellids, is classified into three morpho-groups that reflect different levels of adaptivity to the environment. The cylindrical and ovoid bodies generally adapted to a large spectrum of environments; however, the dendriform body of S. tentoriformis was restricted to the relatively deep-water, oxygen-deficient environment. From a hindsight view, the unique body shape represents a consequence of adaptation that helps maintain an effective use of oxygen and a low energy cost in hypoxic conditions.


Assuntos
Evolução Biológica , Grânulos de Ribonucleoproteínas de Células Germinativas , Biota , Fósseis , Minerais , Oxigênio
4.
Int J Nanomedicine ; 16: 1231-1244, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33633448

RESUMO

BACKGROUND AND AIM: Acute myeloid leukemia (AML), initiated and maintained by leukemia stem cells (LSCs), is often relapsed or refractory to therapy. The present study aimed at assessing the effects of nanozyme-like Fe3O4 nanoparticles (IONPs) combined with cytosine arabinoside (Ara-C) on LSCs in vitro and in vivo. METHODS: The CD34+CD38-LSCs, isolated from human AML cell line KG1a by a magnetic activated cell sorting method, were treated with Ara-C, IONPs, and Ara-C+ IONPs respectively in vitro. The cellular proliferation, apoptosis, reactive oxygen species (ROS), and the related molecular expression levels in LSCs were analyzed using flow cytometry, RT-qPCR, and Western blot. The nonobese diabetic/severe combined immune deficiency mice were transplanted with LSCs or non-LSCs via tail vein, and then the mice were treated with Ara-C, IONPs and IONPs plus Ara-C, respectively. The therapeutic effects on the AML bearing mice were further evaluated. RESULTS: LSCs indicated stronger cellular proliferation, more clone formation, and more robust resistance to Ara-C than non-LSCs. Compared with LSCs treated with Ara-C alone, LSCs treated with IONPs plus Ara-C showed a significant increase in apoptosis and ROS levels that might be regulated by nanozyme-like IONPs via improving the expression of pro-oxidation molecule gp91-phox but decreasing the expression of antioxidation molecule superoxide dismutase 1. The in vivo results suggested that, compared with the AML bearing mice treated with Ara-C alone, the mice treated with IONPs plus Ara-C markedly reduced the abnormal leukocyte numbers in peripheral blood and bone marrow and significantly extended the survival of AML bearing mice. CONCLUSION: IONPs combined with Ara-C showed the effectiveness on reducing AML burden in the mice engrafted with LSCs and extending mouse survival by increasing LSC's ROS level to induce LSC apoptosis. Our findings suggest that targeting LSCs could control the AML relapse by using IONPs plus Ara-C.


Assuntos
Citarabina/uso terapêutico , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/patologia , Nanopartículas Magnéticas de Óxido de Ferro/química , Células-Tronco Neoplásicas/patologia , Espécies Reativas de Oxigênio/metabolismo , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Separação Celular , Citarabina/farmacologia , Hemoglobinas/metabolismo , Humanos , Leucemia Mieloide Aguda/sangue , Contagem de Leucócitos , Camundongos Endogâmicos NOD , Camundongos SCID , NADPH Oxidase 2/metabolismo , Células-Tronco Neoplásicas/efeitos dos fármacos , Superóxido Dismutase/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Proc Biol Sci ; 287(1933): 20201467, 2020 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-32811320

RESUMO

Hyoliths (hyolithids and orthothecids) were one of the most successful early biomineralizing lophotrochozoans and were a key component of the Cambrian evolutionary fauna. However, the morphology, skeletogenesis and anatomy of earliest members of this enigmatic clade, as well as its relationship with other lophotrochozoan phyla remain contentious. Here, we present a new orthothecid, Longxiantheca mira gen. et sp. nov. preserved as part of secondarily phosphatized small shelly fossil assemblage from the lower Cambrian Xinji Formation of North China. Longxiantheca mira retains some ancestral traits of the clade with an undifferentiated disc-shaped operculum, a simple conical conch with apical septa and a two-layered microstructure of aragonitic fibrous bundles. The operculum interior exhibits impressions of soft tissues, including muscle attachment scars, mantle epithelial cells and a central kidney-shaped platform interpreted as a support structure in association with its presumptive feeding apparatus. The muscular system in orthothecids appears to be similar to that in hyolithids, suggesting a consistent anatomical configuration among the total group of hyoliths. The new finding of shell secreting cells demonstrates a mantle regulating the mode of growth for the operculum. Investigations of shell microstructures support the placement of hyoliths as total group molluscs with an unsettled position within the phylum Mollusca.


Assuntos
Exoesqueleto , Evolução Biológica , Moluscos , Animais , Biomineralização , Calcificação Fisiológica , Carbonato de Cálcio , China , Fósseis , Gastrópodes , Fenótipo , Pele
6.
J Cell Physiol ; 235(2): 1405-1416, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31347176

RESUMO

Breast cancer patients with high expression of aldehyde dehydrogenases (ALDHs) cell population have higher tolerability to chemotherapy since the cells posses a characteristic of breast cancer stem cells (BCSCs) that are resistant to conventional chemotherapy. In this study, we found that the ALDH-positive cells were higher in CD44+ CD24- and CD44+ CD24- ESA+ BCSCs than that in both BT549 and MDA-MB-231 cell lines but microRNA-7 (miR-7) level was lower in CD44+ CD24- and CD44+ CD24- ESA+ BCSCs than that in MDA-MB-231 cells. Moreover, miR-7 overexpression in MDA-MB-231 cells decreased ALDH1A3 activity by miR-7 directly binding to the 3'-untranslated region of ALDH1A3; while the ALDH1A3 expression was downregulated in MDA-MB-231 cells, the expressions of CD44 and Epithelium Specific Antigen (ESA) were reduced along with decreasing the BCSC subpopulation. Significantly, enforced expression of miR-7 in CD44+ CD24- ESA+ BCSC markedly inhibited the BCSC-driven xenograft growth in mice by decreasing an expression of ALDH1A3. Collectively, the findings demonstrate the miR-7 inhibits breast cancer growth via suppressing ALDH1A3 activity concomitant with decreasing BCSC subpopulation. This approach may be considered for an investigation on clinical treatment of breast cancers.


Assuntos
Aldeído Oxirredutases/genética , Neoplasias da Mama/genética , MicroRNAs/genética , Células-Tronco Neoplásicas/metabolismo , Aldeído Desidrogenase/metabolismo , Animais , Mama/metabolismo , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Feminino , Humanos , Camundongos , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
7.
Nanomaterials (Basel) ; 9(9)2019 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-31540171

RESUMO

Antimony sulfide (Sb2S3) with a high theoretical capacity is considered as a promising candidate for Na-ion batteries (NIBs) and K-ion batteries (KIBs). However, its poor electrochemical activity and structural stability are the main issues to be solved. Herein, amorphous Sb2S3 nanospheres/carbon nanotube (Sb2S3/CNT) nanocomposites are successfully synthesized via one step self-assembly method. In-situ growth of amorphous Sb2S3 nanospheres on the CNTs is confirmed by X-ray diffraction, field-emission scanning electron microscopy, and transmission electron microscopy. The amorphous Sb2S3/CNT nanocomposites as an anode for NIBs exhibit excellent electrochemical performance, delivering a high charge capacity of 870 mA h g-1 at 100 mA g-1, with an initial coulomb efficiency of 77.8%. Even at 3000 mA g-1, a charge capacity of 474 mA h g-1 can be achieved. As an anode for KIBs, the amorphous Sb2S3/CNT nanocomposites also demonstrate a high charge capacity of 451 mA h g-1 at 25 mA g-1. The remarkable performance of the amorphous Sb2S3/CNT nanocomposites is attributed to the synergic effects of the amorphous Sb2S3 nanospheres and 3D porous conductive network constructed by the CNTs.

8.
Science ; 363(6433): 1338-1342, 2019 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-30898931

RESUMO

Burgess Shale-type fossil Lagerstätten provide the best evidence for deciphering the biotic patterns and magnitude of the Cambrian explosion. Here, we report a Lagerstätte from South China, the Qingjiang biota (~518 million years old), which is dominated by soft-bodied taxa from a distal shelf setting. The Qingjiang biota is distinguished by pristine carbonaceous preservation of labile organic features, a very high proportion of new taxa (~53%), and preliminary taxonomic diversity that suggests it could rival the Chengjiang and Burgess Shale biotas. Defining aspects of the Qingjiang biota include a high abundance of cnidarians, including both medusoid and polypoid forms; new taxa resembling extant kinorhynchs; and abundant larval or juvenile forms. This distinctive composition holds promise for providing insights into the evolution of Cambrian ecosystems across environmental gradients.


Assuntos
Evolução Biológica , Biota , Fósseis , Animais , China , Larva , Minerais
9.
Sci Rep ; 7(1): 1935, 2017 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-28512325

RESUMO

Shell microstructure and mineralogy of Pelagiella madianensis Zhou & Xiao, 1984, a globally distributed Cambrian micromollusk, are investigated based on abundant and extraordinarily well-preserved specimens from Xinji Formation, Longxian, Shaanxi, North China. Five types of aragonitic microstructures have been recognized. The lamello-fibrillar microstructure, previously known from Pelagiella, constructs the outermost shell layer, while the remaining four types are reported here for the first time in this genus. They include fibrous foliated, foliated aragonite, crossed foliated lamellar and isolated tablets. The animal constructs these five types of microstructures to build its shell in a complex hierarchical pattern with four orders: crystallite columns, laths, folia and lamellae. These findings demonstrate that the capability of building complex shell microstructures had already evolved by the Cambrian explosion. In addition, this work shows that early aragonitic shells were constructed with fibers, laths, folia and isolated tablets, indicating increased controls over biomineralization by the animal.


Assuntos
Evolução Biológica , Biomineralização , Moluscos/metabolismo , Moluscos/ultraestrutura , Exoesqueleto/ultraestrutura , Animais , Carbonato de Cálcio/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...