Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Psychol ; 12: 588190, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34305694

RESUMO

This study aims to apply self-congruity theory to examine the relationship between self-congruity of tourists and their perceived image of a gambling destination. This study employs the Euclidean distance model and extends Malhotra's pars of adjectives with five new items about gambling motives. A face-to-face questionnaire survey was used, and a total of 152 samples were collected from tourists in Macau. The results show that the actual self-image of tourists is more related to their perception of Macau image. For actual congruence, tourists exhibit a greater tendency to match the informal, liberal, and emotional image of Macau. For ideal congruence, they have a tendency to match the contemporary, organized, and pleasant image of Macau. This study makes up for the deficiency of self-congruity theory in tourism research. This study helps tourism departments to develop appropriate strategies to promote gambling tourism and disseminate relevant information that can bring gambling destinations closer to tourists.

2.
Anal Chem ; 92(18): 12548-12555, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32804479

RESUMO

Electrochemical tip-enhanced Raman spectroscopy (EC-TERS) is a powerful technique for the in situ study of the physiochemical properties of the electrochemical solid/liquid interface at the nanoscale and molecular level. To further broaden the potential window of EC-TERS while extending its application to opaque samples, here, we develop a top-illumination atomic force microscopy (AFM) based EC-TERStechnique by using a water-immersion objective of a high numerical aperture to introduce the excitation laser and collect the signal. This technique not only extends the application of EC-TERS but also has a high detection sensitivity and experimental efficiency. We coat a SiO2 protection layer over the AFM-TERS tip to improve both the mechanical and chemical stability of the tip in a liquid TERS experiment. We investigate the influence of liquid on the tip-sample distance to obtain the highest TERS enhancement. We further evaluate the reliability of the as-developed EC-AFM-TERS technique by studying the electrochemical redox reaction of polyaniline. The top-illumination EC-AFM-TERS is promising for broadening the application of EC-TERS to more practical systems, including energy storage and (photo)electrocatalysis.

3.
Anal Chem ; 91(17): 11092-11097, 2019 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-31361476

RESUMO

Electrochemical tip-enhanced Raman spectroscopy (EC-TERS) appears as a promising in situ nanospectroscopic tool for characterization and understanding of the electrochemical interfacial processes at the nanometer scale and molecular level. However, the wide application of EC-TERS is hampered by its low sensitivity as a result of the optical path distortion due to the refractive index mismatch of the multilayer media (air, glass, and electrolyte). Here, we propose a new side-illumination EC-TERS setup by coupling a water immersion objective with a high numerical aperture to a scanning tunneling microscope scanning head customized with a large open space and a compact spectroelectrochemical cell. It not only effectively eliminates the optical distortion but also increases the sensitivity remarkably, which allows sensitive monitoring of the electrochemical redox processes of anthraquinone molecules. More importantly, EC-TERS is able to independently control the tip position and laser illumination position. By utilizing this feature, we reveal that the irreversible reduction reaction of anthraquinone observed in EC-TERS is induced by the synergistic effect of the negative potential and laser illumination rather than the localized surface plasmon. The highly improved sensitivity and the flexibility to control the tip and laser illumination position on the nanometer scale endows EC-TERS as an important tool for the fundamental understanding of the photo- or plasmon electrochemistry and the interfacial structure-activity relationship of important electrochemical systems.

4.
Chem Soc Rev ; 46(13): 4020-4041, 2017 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-28590479

RESUMO

Surface and interfaces play key roles in heterogeneous catalysis, electrochemistry and photo(electro)chemistry. Tip-enhanced Raman spectroscopy (TERS) combines plasmon-enhanced Raman spectroscopy with scanning probe microscopy to simultaneously provide a chemical fingerprint and morphological information for the sample at the nanometer spatial resolution. It is an ideal tool for achieving an in-depth understanding of the surface and interfacial processes, so that the relationship between structure and chemical performance can be established. We begin with the background of surfaces and interfaces and TERS, followed by a detailed discussion on some issues in experimental TERS, including tip preparation and TERS instrument configuration. We then focus on the progress of TERS for studying the surfaces and interfaces under different conditions, from ambient, to UHV, solid-liquid and electrochemical environments, followed by a brief introduction to the current understanding of the unprecedented high spatial resolution and surface selection rules. We conclude by discussing the future challenges for TERS practical applications in surfaces and interfaces.

5.
Nanoscale ; 7(43): 18225-31, 2015 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-26482226

RESUMO

Reproducible fabrication of sharp gold- or silver-coated tips has become the bottleneck issue in tip-enhanced Raman spectroscopy, especially for atomic force microscopy (AFM)-based TERS. Herein, we developed a novel method based on pulsed electrodeposition to coat a thin gold layer over atomic force microscopy (AFM) tips to produce plasmonic TERS tips with high reproducibility. We systematically investigated the influence of the deposition potential and step time on the surface roughness and sharpness. This method allows the rational control of the radii of gold-coated TERS tips from a few to hundreds of nanometers, which allows us to systematically study the dependence of the TERS enhancement on the radius of the gold-coated AFM tip. The maximum TERS enhancement was achieved for the tip radius in the range of 60-75 nm in the gap mode. The coated gold layer has a strong adhesion with the silicon tip surface, which is highly stable in water, showing the great potential for application in the aqueous environment.

6.
J Am Chem Soc ; 137(37): 11928-31, 2015 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-26351986

RESUMO

Interfacial properties are highly important to the performance of some energy-related systems. The in-depth understanding of the interface requires highly sensitive in situ techniques that can provide fingerprint molecular information at nanometer resolution. We developed an electrochemical tip-enhanced Raman spectroscopy (EC-TERS) by introduction of the light horizontally to the EC-STM cell to minimize the optical distortion and to keep the TERS measurement under a well-controlled condition. We obtained potential-dependent EC-TERS from the adsorbed aromatic molecule on a Au(111) surface and observed a substantial change in the molecule configuration with potential as a result of the protonation and deprotonation of the molecule. Such a change was not observable in EC-SERS (surface-enhanced), indicating EC-TERS can more faithfully reflect the fine interfacial structure than EC-SERS. This work will open a new era for using EC-TERS as an important nanospectroscopy tool for the molecular level and nanoscale analysis of some important electrochemical systems including solar cells, lithium ion batteries, fuel cells, and corrosion.

7.
Anal Bioanal Chem ; 407(27): 8177-95, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26314483

RESUMO

After over 15 years of development, tip-enhanced Raman spectroscopy (TERS) is now facing a very important stage in its history. TERS offers high detection sensitivity down to single molecules and a high spatial resolution down to sub-nanometers, which make it an unprecedented nanoscale analytical technique offering molecular fingerprint information. The tip is the core element in TERS, as it is the only source through which to support the enhancement effect and provide the high spatial resolution. However, TERS suffers and will continue to suffer from the limited availability of TERS tips with a high enhancement, good stability, and high reproducibility. This review focuses on the tip-related issues in TERS. We first discuss the parameters that influence the enhancement and spatial resolution of TERS and the possibility to optimize the performance of a TERS system via an in-depth understanding of the enhancement mechanism. We then analyze the methods that have been developed for producing TERS tips, including vacuum-based deposition, electrochemical etching, electrodeposition, electroless deposition, and microfabrication, with discussion on the advantages and weaknesses of some important methods. We also tackle the issue of lifetime and protection protocols of TERS tips which are very important for the stability of a tip. Last, some fundamental problems and challenges are proposed, which should be addressed before this promising nanoscale characterization tool can exert its full potential. Graphical Abstract ᅟ.


Assuntos
Microscopia de Força Atômica/instrumentação , Análise Espectral Raman/instrumentação , Ressonância de Plasmônio de Superfície/instrumentação , Animais , Desenho de Equipamento , Humanos , Microtecnologia , Nanopartículas/química , Nanotecnologia/instrumentação
8.
J Am Chem Soc ; 136(47): 16609-17, 2014 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-25350471

RESUMO

Improving electrochemical activity of graphene is crucial for its various applications, which requires delicate control over its geometric and electronic structures. We demonstrate that precise control of the density of vacancy defects, introduced by Ar(+) irradiation, can improve and finely tune the heterogeneous electron transfer (HET) rate of graphene. For reliable comparisons, we made patterns with different defect densities on a same single layer graphene sheet, which allows us to correlate defect density (via Raman spectroscopy) with HET rate (via scanning electrochemical microscopy) of graphene quantitatively, under exactly the same experimental conditions. By balancing the defect induced increase of density of states (DOS) and decrease of conductivity, the optimal HET rate is attained at a moderate defect density, which is in a critical state; that is, the whole graphene sheet becomes electronically activated and, meanwhile, maintains structural integrity. The improved electrochemical activity can be understood by a high DOS near the Fermi level of defective graphene, as revealed by ab initio simulation, which enlarges the overlap between the electronic states of graphene and the redox couple. The results are valuable to promote the performance of graphene-based electrochemical devices. Furthermore, our findings may serve as a guide to tailor the structure and properties of graphene and other ultrathin two-dimensional materials through defect density engineering.

9.
Front Med ; 6(2): 173-86, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22660977

RESUMO

Infectious diseases, mostly caused by bacteria and viruses but also a result of fungal and parasitic infection, have been one of the most important public health concerns throughout human history. The first step in combating these pathogens is to get a timely and accurate diagnosis at an affordable cost. Many kinds of diagnostics have been developed, such as pathogen culture, biochemical tests and serological tests, to help detect and fight against the causative agents of diseases. However, these diagnostic tests are generally unsatisfactory because they are not particularly sensitive and specific and are unable to deliver speedy results. Nucleic acid-based diagnostics, detecting pathogens through the identification of their genomic sequences, have shown promise to overcome the above limitations and become more widely adopted in clinical tests. Here we review some of the most popular nucleic acid-based diagnostics and focus on their adaptability and applicability to routine clinical usage. We also compare and contrast the characteristics of different types of nucleic acid-based diagnostics.


Assuntos
Doenças Transmissíveis/diagnóstico , Técnicas de Amplificação de Ácido Nucleico/métodos , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Doenças Transmissíveis/microbiologia , Humanos , Reação em Cadeia da Polimerase , Saúde Pública , Replicação de Sequência Autossustentável
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...