Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
JAMIA Open ; 5(3): ooac056, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35855422

RESUMO

Objective: Predicting daily trends in the Coronavirus Disease 2019 (COVID-19) case number is important to support individual decisions in taking preventative measures. This study aims to use COVID-19 case number history, demographic characteristics, and social distancing policies both independently/interdependently to predict the daily trend in the rise or fall of county-level cases. Materials and Methods: We extracted 2093 features (5 from the US COVID-19 case number history, 1824 from the demographic characteristics independently/interdependently, and 264 from the social distancing policies independently/interdependently) for 3142 US counties. Using the top selected 200 features, we built 4 machine learning models: Logistic Regression, Naïve Bayes, Multi-Layer Perceptron, and Random Forest, along with 4 Ensemble methods: Average, Product, Minimum, and Maximum, and compared their performances. Results: The Ensemble Average method had the highest area-under the receiver operator characteristic curve (AUC) of 0.692. The top ranked features were all interdependent features. Conclusion: The findings of this study suggest the predictive power of diverse features, especially when combined, in predicting county-level trends of COVID-19 cases and can be helpful to individuals in making their daily decisions. Our results may guide future studies to consider more features interdependently from conventionally distinct data sources in county-level predictive models. Our code is available at: https://doi.org/10.5281/zenodo.6332944.

2.
Int J Med Inform ; 156: 104599, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34628257

RESUMO

BACKGROUND: An image sharing framework is important to support downstream data analysis especially for pandemics like Coronavirus Disease 2019 (COVID-19). Current centralized image sharing frameworks become dysfunctional if any part of the framework fails. Existing decentralized image sharing frameworks do not store the images on the blockchain, thus the data themselves are not highly available, immutable, and provable. Meanwhile, storing images on the blockchain provides availability/immutability/provenance to the images, yet produces challenges such as large-image handling, high viewing latency while viewing images, and software inconsistency while storing/loading images. OBJECTIVE: This study aims to store chest x-ray images using a blockchain-based framework to handle large images, improve viewing latency, and enhance software consistency. BASIC PROCEDURES: We developed a splitting and merging function to handle large images, a feature that allows previewing an image earlier to improve viewing latency, and a smart contract to enhance software consistency. We used 920 publicly available images to evaluate the storing and loading methods through time measurements. MAIN FINDINGS: The blockchain network successfully shares large images up to 18 MB and supports smart contracts to provide code immutability, availability, and provenance. Applying the preview feature successfully shared images 93% faster than sharing images without the preview feature. PRINCIPAL CONCLUSIONS: The findings of this study can guide future studies to generalize our framework to other forms of data to improve sharing and interoperability.


Assuntos
Blockchain , Diagnóstico por Imagem , Humanos , Software , Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...