Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Vet Sci ; 8: 684295, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34307526

RESUMO

An experiment was conducted to determine the effects of supplementing the diet of Jinjiang bulls with guanidinoacetic acid (GAA) on their feed efficiency [feed efficiency were evaluated with feedlot average daily gain (ADG), average daily feed intake (ADFI), and feed-to-gain ratio (F:G)], blood measures, and meat quality. Forty-five Jinjiang bulls (24 ± 3 months old and 350.15 ± 30.39 kg by weight) were randomly distributed among five experimental groups (each n = 9) and each group was randomly fed with one of five diets (concentrate: roughage ratio of 60:40): (1) control; (2) 0.05% GAA; (3) 0.1% GAA; (4) 0.2% GAA; and (5) 0.4% GAA, respectively. After a 52-days feeding trial, five bulls from the control group and five bulls from the optimal GAA supplementing group were randomly selected and slaughtered for collection of the longissimus thoracis (LT) and semitendinosus (SM) muscles to determine meat quality. The results showed that dietary GAA improved the ADG, decreased the value of F:G, and affected blood measures and antioxidant variables. Supplementing 0.2% GAA into the diet was optimal for feeding efficiency and most of the measured blood measures. Supplementing 0.2% GAA into the diet increased the a* (redness) values, and b* (yellowness) values, and the amount of creatine kinase (CK), muscle glycogen, creatinine (CRE), and laminin (LN) in LT muscles. However, it decreased the drip loss, L* (lightness) value, and lactate dehydrogenase (LDH) content of LT muscles. Drip loss and shear force decreased in SM muscles, as did the amount of type IV collagen (CV-IV). In conclusion, supplementing 0.2% GAA into the diet could enhance feed efficiency to improve beef growth and meat quality.

2.
J Anim Physiol Anim Nutr (Berl) ; 104(1): 1-11, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31850600

RESUMO

Daidzein has been reported to be effective in regulating lipid metabolism in animals. However, the molecular mechanisms of daidzein on adipogenesis in beef cattle are not yet reported and the results of daidzein on affecting lipid metabolism in other species have been conflicting. High-throughput sequencing of mRNA (RNA-Seq) technology was performed to elucidate the underlying molecular mechanisms of daidzein on adipogenesis in subcutaneous adipose tissue of finishing Xianan beef cattle. A total of 893 differentially expressed genes (DEGs) were identified by differential expression analysis, among which 405 genes were upregulated and 488 genes were downregulated. Bioinformatics analysis suggested that these DEGs were significantly enriched to the pathways related to lipid metabolism including ECM-receptor interaction, Glycolysis/Gluconeogenesis and Hedgehog signalling pathway. Daidzein significantly affected the candidate genes (Shh, Pec, Gli, Wnt6, DLK, IGFBP2, ID3 and C/EBPE) related to adipocyte differentiation. Besides, daidzein improved the ability of subcutaneous adipocytes in synthesizing triglycerides by directly using the long-chain fatty acids and enhanced the efficiency of triglyceride synthesis of subcutaneous adipocytes in Xianan steers. In conclusion, daidzein plays a positive role not only in adipogenic differentiation, but also in triglyceride synthesis in subcutaneous adipose tissue of Xianan beef cattle.


Assuntos
Bovinos/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Isoflavonas/farmacologia , RNA-Seq/veterinária , Gordura Subcutânea/efeitos dos fármacos , Gordura Subcutânea/metabolismo , Ração Animal/análise , Animais , Composição Corporal/efeitos dos fármacos , Dieta/veterinária , Isoflavonas/administração & dosagem , Masculino
3.
Mikrochim Acta ; 186(12): 836, 2019 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-31758341

RESUMO

A series of phosphorene (BP) nanocomposites was prepared to realize simultaneous electrochemical determination of clenbuterol (CLB) and ractopamine (RAC). CLB and RAC are the most commonly used ß-agonists in animal-derived food. The BP nanohybrid was obtained by co-decoration with both mono(6-mercapto-6-deoxy)-ß-cyclodextrin and poly(3,4-ethylenedioxythiophene) nanoparticles. It displays high stability, antifouling capability, a large electrochemical active surface and good electrochemical response. The electrochemical assisted antifouling strategy was selected by further eliminating the fouling of the electrode surface using continuous cyclic voltammetry. The electrode was employed for electrochemical sensing of CLB and RAC at typical peak voltages of 0.8 and 1.0 V (vs. SCE). Responses are linear in the 0.3-90 µM concentration range for CLB, and from 0.3 to 9.4 µM for RAC under optimal conditions. The limit of detection are 0.14 and 0.12 µM, respectively. The sensor was employed for simultaneous determination of CLB and RAC in (spiked) beef, feed and bovine serum samples with acceptable recoveries. Graphical abstractAn electrochemically assisted anti-fouling method for simultaneous voltammetric nanosensing of clenbuterol (CLB) and ractopamine (RAC) in edible cattle product samples using high-stable and anti-foul phosphorene (BP) co-decorated with mono(6-mercapto-6-deoxy)-ß-cyclodextrin (S-ß-CD) and poly(3,4-ethylenedioxythiophene) (PEDOTNPs).


Assuntos
Incrustação Biológica/prevenção & controle , Clembuterol/análise , Nanocompostos/química , Fenetilaminas/análise , Fósforo/química , Animais , Bovinos , Técnicas Eletroquímicas , Eletrodos , Tamanho da Partícula , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...