Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 269
Filtrar
1.
Phytother Res ; 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38839050

RESUMO

Pediatric intestinal development is immature, vulnerable to external influences and produce a variety of intestinal diseases. At present, breakthroughs have been made in the treatment of pediatric intestinal diseases, but there are still many challenges, such as toxic side effects, drug resistance, and the lack of more effective treatments and specific drugs. In recent years, dietary polyphenols derived from plants have become a research hotspot in the treatment of pediatric intestinal diseases due to their outstanding pharmacological activities such, as anti-inflammatory, antibacterial, antioxidant and regulation of intestinal flora. This article reviewed the mechanism of action and clinical evidence of dietary polyphenols in the treatment of pediatric intestinal diseases, and discussed the influence of physiological characteristics of children on the efficacy of polyphenols, and finally prospected the new dosage forms of polyphenols in pediatrics.

2.
Angew Chem Int Ed Engl ; : e202402446, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38859748

RESUMO

In this study, we successfully developed two novel vinylene-linked covalent organic frameworks (COFs) using 2-connected 3,6-dimethylpyridazine through Knoevenagel condensation. These COFs featured finely tailored micro-/nano-scale pore sizes, high surface areas and stable non-polar vinylene linkages. Finely resolved powder X-ray diffraction patterns demonstrated highly crystalline structures with a hexagonal lattice in the AA layer stacking. The resulting one-dimensional channels possess strong hydrogen-bond accepting sites arising from the decorated cis-azo/azine units with two pairs of fully exposed lone pair electrons, endowing the as-prepared COFs with exceptional water absorption properties. The g-DZPH-COF exhibited successive steep water uptake steps starting from low relative pressures (P/PSTA = 0.1), with the remarkable water uptake capacity of 0.26 g/g at P/PSTA = 0.2 (25°C), which is the optimal value recorded among the reported COFs. Dynamic vapour sorption measurements revealed the fast kinetics of these COFs, even in the cluster formation process. Water uptake and release cycling tests demonstrated their outstanding hydrolytic stability, durability, and adsorption-desorption retention ability.

3.
Nat Commun ; 15(1): 5161, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38886405

RESUMO

Top emission can enhance luminance, color purity, and panel-manufacturing compatibility for emissive displays. Still, top-emitting quantum-dot light-emitting diodes (QLEDs) suffer from poor stability, low light outcoupling, and non-negligible viewing-angle dependence because, for QLEDs with non-red emission, the electrically optimum device structure is incompatible with single-mode optical microcavity. Here, we demonstrate that by improving the way of determining reflection penetration depths and creating refractive-index-lowering processes, the issues faced by green QLEDs can be overcome. This leads to advanced device performance, including a luminance exceeding 1.6 million nits, a current efficiency of 204.2 cd A-1, and a T95 operational lifetime of 15,600 hours at 1000 nits. Meanwhile, our design does not compromise light outcoupling as it offers an external quantum efficiency of 29.2% without implementing light extraction methods. Lastly, an angular color shift of Δu'v' = 0.0052 from 0° to 60° is achieved by narrowing the emission linewidth of quantum dots.

4.
Front Cell Dev Biol ; 12: 1371323, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38915444

RESUMO

Purpose: This study aimed to explore the expression of CX3CL1 induced by lipopolysaccharide (LPS) in oral squamous cell carcinoma (OSCC) and its impact on biological characteristics such as invasion and migration, taking the foundation for new targets for the treatment and prognosis of OSCC. Methods: This study utilized a variety of techniques, including bioinformatics, molecular biology, and cell experiments, to investigate the expression of CX3CL1 and its receptor CX3CR1 in OSCC patients' cancer tissues or OSCC cell lines. Extracting, organizing, and analyzing the TCGA database on the expression of CX3CL1 and its receptor CX3CR1 in cancer tissues and corresponding paracancerous normal tissues of OSCC patients by bioinformatics methods. The expression of CX3CL1 in cancerous and normal tissues of OSCC patients was verified by IHC, and the changes in mRNA and protein expression of CX3CL1 and its receptor CX3CR1 in OSCC cell lines were detected before and after lipopolysaccharide LPS stimulation by RT-PCR, ELISA, and WB. Changes in cell biological behavior by overexpression of CX3CL1 in OSCC cell lines were detected by CCK-8, Transwell, scratch healing assay, and cloning assay. The effects of overexpressing cell lines on the AKT pathway and Epithelial-mesenchymal Transition (EMT)-related protein expression before and after LPS stimulation were detected by Western Blot. Results: (1) CX3CL1 and its receptor CX3CR1 were found to be downregulated in OSCC tissues of patients or OSCC cell lines. (2) After LPS stimulation, CX3CL1 gene expression increased in both OSCC cell lines, while CX3CR1 expression remained unchanged. (3) OSCC cell lines overexpressing CX3CL1 showed changes in cell biological characteristics, including decreased proliferation, invasion, migration, and stemness, which were more pronounced after LPS stimulation. (4) Overexpression of CX3CL1 in OSCC cell lines decreased EMT-related protein expression and AKT phosphorylation. On the contrary were promoted by LPS stimulation. Conclusion: CX3CL1 and CX3CR1 are downregulated in OSCC cancer tissues and cell lines compared to adjacent normal tissues and cells. LPS stimulation increases CX3CL1 expression in OSCC cell lines, suggesting that inflammation may induce CX3CL1 expression and that the CX3CL1 gene may play an important role in OSCC progression. Overexpression of CX3CL1 inhibits OSCC cell proliferation, migration, invasion, and stemness, suggesting that CX3CL1 plays a critical role in suppressing OSCC development. CX3CL1 suppresses OSCC invasion and migration by affecting EMT progression and AKT phosphorylation, and partially reverse the process that LPS causes and affects the development of OSCC.

5.
Artigo em Inglês | MEDLINE | ID: mdl-38902191

RESUMO

BACKGROUND AND AIMS: Recently, metabolic dysfunction-associated steatotic liver disease (MASLD) has been introduced. However, research on this new nomenclature and definition remains limited. This study aims to assess the impact of cardiometabolic risk factors and alcohol consumption on all-cause mortality in MASLD and its subgroups. METHODS AND RESULTS: We included 2408 participants with MASLD in NHANES III and their linked mortality through 2019. MASLD patients were divided into two groups based on alcohol consumption: Pure MASLD and MetALD. The Cox proportional hazard model was used to assess the association between factors and all-cause mortality. During the median 26.0-year follow-up, there were 1040 deaths. The multivariable Cox regression analysis revealed a significant increase of over two-fold in the all-cause mortality rate among patients with four or more cardiometabolic risk factors compared to those with only one. When focusing on each component of cardiometabolic risk factors individually, only diabetes and hypertension were significantly associated with all-cause mortality (p < 0.05). In a subgroup analysis, each additional cardiometabolic factor was linked to an increase in all-cause mortality in both pure MASLD (hazard ratio 1.16; 95% CI 1.06-1.28; p = 0.002) and MetALD (HR 1.77; 95% CI 1.26-2.49; p = 0.001). Notably, an elevation in alcohol consumption was significantly associated with an increase in all-cause mortality rate only in the MetALD (p < 0.001). CONCLUSIONS: This study found that the presence of diabetes or hypertension was significantly associated with all-cause mortality. We also explored the different impacts of these factors and alcohol consumption within MASLD subgroups.

6.
Cell Res ; 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38898113

RESUMO

The shift of carbon utilization from primarily glucose to other nutrients is a fundamental metabolic adaptation to cope with decreased blood glucose levels and the consequent decline in glucose oxidation. AMP-activated protein kinase (AMPK) plays crucial roles in this metabolic adaptation. However, the underlying mechanism is not fully understood. Here, we show that PDZ domain containing 8 (PDZD8), which we identify as a new substrate of AMPK activated in low glucose, is required for the low glucose-promoted glutaminolysis. AMPK phosphorylates PDZD8 at threonine 527 (T527) and promotes the interaction of PDZD8 with and activation of glutaminase 1 (GLS1), a rate-limiting enzyme of glutaminolysis. In vivo, the AMPK-PDZD8-GLS1 axis is required for the enhancement of glutaminolysis as tested in the skeletal muscle tissues, which occurs earlier than the increase in fatty acid utilization during fasting. The enhanced glutaminolysis is also observed in macrophages in low glucose or under acute lipopolysaccharide (LPS) treatment. Consistent with a requirement of heightened glutaminolysis, the PDZD8-T527A mutation dampens the secretion of pro-inflammatory cytokines in macrophages in mice treated with LPS. Together, we have revealed an AMPK-PDZD8-GLS1 axis that promotes glutaminolysis ahead of increased fatty acid utilization under glucose shortage.

7.
Cell Death Dis ; 15(6): 453, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38926362

RESUMO

Liver regeneration is a complex process involving the crosstalk between parenchymal and non-parenchymal cells, especially macrophages. However, the underlying mechanisms remain incompletely understood. Here, we identify the E3 ubiquitin ligase TRIM26 as a crucial regulator of liver regeneration. Following partial hepatectomy or acute liver injury induced by carbon tetrachloride, Trim26 knockout mice exhibit enhanced hepatocyte proliferation compared to wild-type controls, while adeno-associated virus (AAV)-mediated overexpression of Trim26 reverses the promotional effects. Mechanistically, Trim26 deficiency promotes the recruitment of macrophages to the liver and their polarization towards pro-inflammatory M1 phenotype. These M1 macrophages secrete Wnts, including Wnt2, which subsequently stimulate hepatocyte proliferation through the activation of Wnt/ß-catenin signaling. In hepatocytes, Trim26 knockdown reduces the ubiquitination and degradation of ß-catenin, thereby further enhancing Wnt/ß-catenin signaling. Pharmacological inhibition of Wnt/ß-catenin pathway by ICG-001 or depletion of macrophages by clodronate liposomes diminishes the pro-regenerative effects of Trim26 deficiency. Moreover, bone marrow transplantation experiments provide evidence that Trim26 knockout in myeloid cells alone can also promote liver regeneration, highlighting the critical role of macrophage Trim26 in this process. Taken together, our study uncovers TRIM26 as a negative regulator of liver regeneration by modulating macrophage polarization and Wnt/ß-catenin signaling in hepatocytes, providing a potential therapeutic target for promoting liver regeneration in clinical settings.


Assuntos
Hepatócitos , Regeneração Hepática , Macrófagos , Camundongos Knockout , Ubiquitina-Proteína Ligases , Via de Sinalização Wnt , beta Catenina , Animais , Macrófagos/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Camundongos , beta Catenina/metabolismo , Hepatócitos/metabolismo , Camundongos Endogâmicos C57BL , Proteínas com Motivo Tripartido/metabolismo , Proteínas com Motivo Tripartido/genética , Proliferação de Células , Fígado/metabolismo , Fígado/patologia , Polaridade Celular , Masculino , Ubiquitinação
8.
Artigo em Inglês | MEDLINE | ID: mdl-38782232

RESUMO

OBJECTIVE: To evaluate the feasibility, acceptability, and efficacy of a mindfulness and motivational interviewing-oriented physical-psychological integrated intervention in community-dwelling spinal cord injury (SCI) survivors. DESIGN: A mixed-methods randomized controlled trial. SETTING: Local organizations of handicapped in Hong Kong. PARTICIPANTS: Community-dwelling adults with SCI (N = 72). INTERVENTIONS: Participants in the intervention group (n = 36) received video-guided exercise for daily practice and online group psychological (mindfulness and motivational interviewing-oriented) weekly sessions for eight weeks. Participants in the control group (n = 36) received an eight-week online group didactic education on lifestyle discussions and general health suggestions. MAIN OUTCOMES MEASURES: Primary outcomes included quality of life, physical activity, depression, and chronic pain. Secondary outcomes included exercise self-efficacy and mindfulness. Outcomes were measured at baseline, post-intervention, and three-month follow-up. Focus-group interviews were conducted post-intervention. RESULTS: The recruitment, retention, and adherence rates were 84.7%, 100%, and 98.6%, respectively. The intervention showed significant positive effects on preventing declines in quality of life at three-month follow-up [Cohen's d = 0.70 (0.22, 1.18)]. Positive trends manifested in physical activity, depression, chronic pain, and exercise self-efficacy. Three qualitative categories were identified: subjective improvements in exercise, physical, and social well-being; perceived changes in mindfulness and mental well-being; and intervention facilitators and barriers. CONCLUSIONS: The mindfulness and motivational interviewing-oriented physical-psychological integrated intervention is feasible and acceptable. The significant prolonged effect in maintaining quality of life and positive impacts on physical and psychosocial well-being indicate its value to address major health challenges of community-dwelling SCI survivors.

9.
Microorganisms ; 12(5)2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38792827

RESUMO

Surfactin is widely used in the petroleum extraction, cosmetics, biopharmaceuticals and agriculture industries. It possesses antibacterial and antiviral activities and can reduce interfacial tension. Bacillus are commonly used as production chassis, but wild-type Bacillus subtilis 168 cannot synthesise surfactin. In this study, the phosphopantetheinyl transferase (PPTase) gene sfp* (with a T base removed) was overexpressed and enzyme activity was restored, enabling B. subtilis 168 to synthesise surfactin with a yield of 747.5 ± 6.5 mg/L. Knocking out ppsD and yvkC did not enhance surfactin synthesis. Overexpression of predicted surfactin transporter gene yfiS increased its titre to 1060.7 ± 89.4 mg/L, while overexpression of yerP, ycxA and ycxA-efp had little or negative effects on surfactin synthesis, suggesting YfiS is involved in surfactin efflux. By replacing the native promoter of the srfA operon encoding surfactin synthase with three promoters, surfactin synthesis was significantly reduced. However, knockout of the global transcriptional regulator gene codY enhanced the surfactin titre to 1601.8 ± 91.9 mg/L. The highest surfactin titre reached 3.89 ± 0.07 g/L, with the yield of 0.63 ± 0.02 g/g DCW, after 36 h of fed-batch fermentation in 5 L fermenter. This study provides a reference for further understanding surfactin synthesis and constructing microbial cell factories.

10.
ACS Appl Mater Interfaces ; 16(21): 27988-27997, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38748900

RESUMO

Pickering emulsions stabilized by functional nanoparticles (NPs) have received considerable attention for improving the physical stability and biological function of NPs. Herein, hydrophobic polyphenols were chosen as phenolic ligands to form metal-phenolic network (MPN) coatings on NPs (e.g., silica, polystyrene) mediated by the sono-Fenton reaction. The MPN coatings modulated the surface wettability and charges of NPs and achieved emulsification behavior for preparing Pickering emulsions with pH responsiveness and oxidation resistance. A series of polyphenols, including resveratrol, rutin, naringin, and curcumin, were used to form MPN coatings on NPs, which served as stabilizers for the engineering of functionalized oil-in-water (O/W) Pickering emulsions. This work provides a new avenue for the use of hydrophobic polyphenols to modulate NP emulsifiers, which broadens the application of polyphenols for constructing Pickering emulsions with antioxidant properties.

11.
Electrophoresis ; 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38738699

RESUMO

The viability detection of microalgae with the electrokinetic (EK) technique shows vast applications in the biology and maritime industry. However, due to the slight variations in the EK properties between alive and dead microalgae cells, the accuracy and practicability of this technique is limited. In this paper, the light illumination pretreatment was conducted to modify the EK velocity of microalgae for enhancing the EK difference. The effects of the illumination time and light color on the EK velocities of Chlorella vulgaris and Isochrysis galbana were systematically measured, and the EK differences between alive and dead cells were calculated and compared. The results indicate that under light illumination, the photosynthesis of the alive cells leads to the amplification of the zeta potential, leading toward increase in the EK difference along with the illumination time. By using light with different color spectra to treat the microalgae, it was found that the EK difference changes with the light color according to the following order: white light > red light > blue light > green light. The difference in EK potential with exposure to white light treatment surpasses over 10-fold in comparison to those without such treatment. The light pretreatment technique, as illustrated in this study, offers an advantageous strategy to enhance the EK difference between living and dead cells, proving beneficial in the field of microalgae biotechnology.

12.
BMC Cancer ; 24(1): 667, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38822303

RESUMO

BACKGROUND: The causal impact of lipid-lowering drugs on ovarian cancer (OC) and cervical cancer (CC) has received considerable attention, but its causal relationship is still a subject of debate. Hence, the objective of this study is to evaluate the impact of lipid-lowering medications on the occurrence risk of OC and CC through Mendelian randomization (MR) analysis of drug targets. METHODS: This investigation concentrated on the primary targets of lipid-lowering medications, specifically, 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGCR) and proprotein convertase kexin 9 (PCSK9). Genetic variations associated with HMGCR and PCSK9 were derived from published genome-wide association study (GWAS) findings to serve as substitutes for HMGCR and PCSK9 inhibitors. Employing a MR approach, an analysis was conducted to scrutinize the impact of inhibitors targeting HMGCR and PCSK9 on the occurrence of OC and CC. Coronary heart disease (CHD) risk was utilized as a positive control, and the primary outcomes encompassed OC and CC. RESULTS: The findings of the study suggest a notable elevation in the risk of OC among patients treated with HMGCR inhibitors (OR [95%CI] = 1.815 [1.316, 2.315], p = 0.019). In contrast, no significant correlation was observed between PCSK9 inhibitors and the occurrence of OC. Additionally, the analysis did not reveal any noteworthy connection between HMGCR inhibitors, PCSK9 inhibitors, and CC. CONCLUSION: HMGCR inhibitors significantly elevate the risk of OC in patients, but their mechanism needs further investigation, and no influence of PCSK9 inhibitors on OC has been observed. There is no significant relationship between HMGCR inhibitors, PCSK9 inhibitors, and CC.


Assuntos
Estudo de Associação Genômica Ampla , Hidroximetilglutaril-CoA Redutases , Análise da Randomização Mendeliana , Neoplasias Ovarianas , Pró-Proteína Convertase 9 , Neoplasias do Colo do Útero , Humanos , Feminino , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/tratamento farmacológico , Hidroximetilglutaril-CoA Redutases/genética , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/tratamento farmacológico , Pró-Proteína Convertase 9/genética , Hipolipemiantes/uso terapêutico , Hipolipemiantes/efeitos adversos , Inibidores de Hidroximetilglutaril-CoA Redutases/efeitos adversos , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Polimorfismo de Nucleotídeo Único
14.
Int J Biol Macromol ; 271(Pt 2): 132530, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38777005

RESUMO

Synergistically improving the mechanical and degradable properties of polylactic acid (PLA) scaffolds and endowing them with bioactivity are urgent problems to be solved in deepening their application in tissue engineering. In this work, tetracalcium phosphate (TTCP) and porous iron (pFe) were compounded by stirring and vacuum negative pressure, and then they were blended with polylactic acid and a porous scaffold (named TTCP@pFe/PLA) was prepared by selective laser sintering. On the one hand, molten polylactic acid penetrates the pores of porous iron to form an interlocking network, thereby achieving mechanical strengthening. On the other hand, the alkaline environment generated by the dissolution of tetracalcium phosphate can effectively catalyze the hydrolysis of polylactic acid to accelerate the degradation. Meanwhile, the dissolution of tetracalcium phosphate forms a local calcium-rich microenvironment, which rapidly induces apatite formation, that is, confers bioactivity on scaffolds. As a result, the TTCP@pFe/PLA scaffold exhibited a notable enhancement in mechanical strength, being 2.2 times stronger compared to the polylactic acid scaffold. More importantly, MC3T3E1 cells exhibit good adhesion, stretching, and proliferation on the composite scaffold, demonstrating good cytocompatibility. All these good properties of the TTCP@pFe/PLA scaffold indicate that it has potential applications as a novel alternative in bone tissue regeneration.


Assuntos
Fosfatos de Cálcio , Ferro , Poliésteres , Alicerces Teciduais , Poliésteres/química , Alicerces Teciduais/química , Porosidade , Camundongos , Animais , Ferro/química , Fosfatos de Cálcio/química , Fosfatos de Cálcio/farmacologia , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Engenharia Tecidual/métodos , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Teste de Materiais , Fenômenos Mecânicos
15.
medRxiv ; 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38585938

RESUMO

The enforcement of COVID-19 interventions by diverse governmental bodies, coupled with the indirect impact of COVID-19 on short-term environmental changes (e.g. plant shutdowns lead to lower greenhouse gas emissions), influences the dengue vector. This provides a unique opportunity to investigate the impact of COVID-19 on dengue transmission and generate insights to guide more targeted prevention measures. We aim to compare dengue transmission patterns and the exposure-response relationship of environmental variables and dengue incidence in the pre- and during-COVID-19 to identify variations and assess the impact of COVID-19 on dengue transmission. We initially visualized the overall trend of dengue transmission from 2012-2022, then conducted two quantitative analyses to compare dengue transmission pre-COVID-19 (2017-2019) and during-COVID-19 (2020-2022). These analyses included time series analysis to assess dengue seasonality, and a Distributed Lag Non-linear Model (DLNM) to quantify the exposure-response relationship between environmental variables and dengue incidence. We observed that all subregions in Thailand exhibited remarkable synchrony with a similar annual trend except 2021. Cyclic and seasonal patterns of dengue remained consistent pre- and during-COVID-19. Monthly dengue incidence in three countries varied significantly. Singapore witnessed a notable surge during-COVID-19, particularly from May to August, with cases multiplying several times compared to pre-COVID-19, while seasonality of Malaysia weakened. Exposure-response relationships of dengue and environmental variables show varying degrees of change, notably in Northern Thailand, where the peak relative risk for the maximum temperature-dengue relationship rose from about 3 to 17, and the max RR of overall cumulative association 0-3 months of relative humidity increased from around 5 to 55. Our study is the first to compare dengue transmission patterns and their relationship with environmental variables before and during COVID-19, showing that COVID-19 has affected dengue transmission at both the national and regional level, and has altered the exposure-response relationship between dengue and the environment.

16.
Mikrochim Acta ; 191(5): 280, 2024 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-38649540

RESUMO

An interfacial galvanic replacement strategy to controllable synthesize palladium nanoparticles (Pd NPs)-modified NiFe MOF nanocomposite on nickel foam, which served as an efficient sensing platform for quantitative determination of dopamine (DA). Pd NPs grown in situ on the nanosheets of NiFe MOF via self-driven galvanic replacement reaction (GRR) and well uniform distribution was achieved. This method effectively reduced the aggregation of metallic nanoparticles and significantly promoted the electron transfer rate during the electrochemical process, leading to improved electrocatalytic activity for DA oxidation. Remarkably, the precisely constructed biosensor achieved a low detection limit (LOD) of 0.068 µM and recovery of 94.1% (RSD 6.7%, N = 3) for simulated real sample detection and also exhibited superior selectivity and stability. The results confirmed that the as-fabricated Pd-NiFe/NF composite electrode could realize the quantitative determination of DA and showed promising prospects in real sample biosensing.


Assuntos
Técnicas Biossensoriais , Dopamina , Estruturas Metalorgânicas , Nanoestruturas , Dopamina/análise , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Técnicas Eletroquímicas/instrumentação , Técnicas Eletroquímicas/métodos , Técnicas Eletroquímicas/normas , Níquel/química , Eletrodos/normas , Paládio/química , Técnicas Biossensoriais/instrumentação , Técnicas Biossensoriais/métodos , Microscopia Eletrônica de Varredura , Estruturas Metalorgânicas/síntese química , Estruturas Metalorgânicas/ultraestrutura , Sensibilidade e Especificidade , Condutividade Elétrica , Microscopia Eletrônica de Transmissão , Ferro/química , Reprodutibilidade dos Testes
17.
Open Life Sci ; 19(1): 20220851, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38645752

RESUMO

Bone regeneration and mineralization can be achieved by means of distraction osteogenesis (DO). In the present study, we investigated the effect of stromal cell-derived factor 1 (SDF-1) and vascular endothelial growth factor (VEGF) on the new bone formation during DO in rats. Forty-eight Sprague-Dawley rats were randomized into four groups of 12 rats each. We established the left femoral DO model in rats and performed a mid-femoral osteotomy, which was fixed with an external fixator. DO was performed at 0.25 mm/12 h after an incubation period of 5 days. Distraction was continued for 10 days, resulting in a total of 5 mm of lengthening. After distraction, the solution was locally injected into the osteotomy site, once a day 1 ml for 1 week. One group received the solvent alone and served as the control, and the other three groups were treated with SDF-1, VEGF, and SDF-1with VEGF in an aqueous. Sequential X-ray radiographs were taken two weekly. The regeneration was monitored with the use of micro-CT analysis, mechanical testing, and histology. Radiographs showed accelerated regenerate ossification in the SDF-1, VEGF, and SDF-1 with the VEGF group, with a larger amount of new bone compared with the control group, especially SDF-1 with the VEGF group. Micro-CT analysis and biomechanical tests showed Continuous injection of the SDF-1, VEGF, and SDF-1 with VEGF during the consolidation period significantly increased bone mineral density bone volume, mechanical maximum loading, and bone mineralization of the regenerate. Similarly, the expression of osteogenic-specific genes, as determined by real-time polymerase chain reaction , was significantly higher in SDF-1 with the VEGF group than in the other groups. Histological examination revealed more new trabeculae in the distraction gap and more mature bone tissue for the SDF-1 with the VEGF group. SDF-1 and VEGF promote bone regeneration and mineralization during DO, and there is a synergistic effect between the SDF-1 and VEGF. It is possible to provide a new and feasible method to shorten the period of treatment of DO.

18.
J Exp Clin Cancer Res ; 43(1): 103, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38570866

RESUMO

BACKGROUND: Brain metastasis (BM) is common among cases of advanced non-small cell lung cancer (NSCLC) and is the leading cause of death for these patients. Mesothelin (MSLN), a tumor-associated antigen expressed in many solid tumors, has been reported to be involved in the progression of multiple tumors. However, its potential involvement in BM of NSCLC and the underlying mechanism remain unknown. METHODS: The expression of MSLN was validated in clinical tissue and serum samples using immunohistochemistry and enzyme-linked immunosorbent assay. The ability of NSCLC cells to penetrate the blood-brain barrier (BBB) was examined using an in vitro Transwell model and an ex vivo multi-organ microfluidic bionic chip. Immunofluorescence staining and western blotting were used to detect the disruption of tight junctions. In vivo BBB leakiness assay was performed to assess the barrier integrity. MET expression and activation was detected by western blotting. The therapeutic efficacy of drugs targeting MSLN (anetumab) and MET (crizotinib/capmatinib) on BM was evaluated in animal studies. RESULTS: MSLN expression was significantly elevated in both serum and tumor tissue samples from NSCLC patients with BM and correlated with a poor clinical prognosis. MSLN significantly enhanced the brain metastatic abilities of NSCLC cells, especially BBB extravasation. Mechanistically, MSLN facilitated the expression and activation of MET through the c-Jun N-terminal kinase (JNK) signaling pathway, which allowed tumor cells to disrupt tight junctions and the integrity of the BBB and thereby penetrate the barrier. Drugs targeting MSLN (anetumab) and MET (crizotinib/capmatinib) effectively blocked the development of BM and prolonged the survival of mice. CONCLUSIONS: Our results demonstrate that MSLN plays a critical role in BM of NSCLC by modulating the JNK/MET signaling network and thus, provides a potential novel therapeutic target for preventing BM in NSCLC patients.


Assuntos
Benzamidas , Neoplasias Encefálicas , Carcinoma Pulmonar de Células não Pequenas , Imidazóis , Neoplasias Pulmonares , Triazinas , Humanos , Animais , Camundongos , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Mesotelina , Neoplasias Pulmonares/patologia , Proteínas Ligadas por GPI/metabolismo , Crizotinibe , Linhagem Celular Tumoral , Neoplasias Encefálicas/patologia
19.
BMJ Open ; 14(3): e081480, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38553056

RESUMO

OBJECTIVES: Immune checkpoint inhibitors (ICIs) are indicated for metastatic urothelial cancer (mUC), but predictive and prognostic factors are lacking. We investigated clinical variables associated with ICI outcomes. METHODS: We performed a multicentre retrospective cohort study of 135 patients who received ICI for mUC, 2016-2021, at three Canadian centres. Clinical characteristics, body mass index (BMI), metastatic sites, neutrophil-to-lymphocyte ratio (NLR), response and survival were abstracted from chart review. RESULTS: We identified 135 patients and 62% had received ICI as a second-line or later treatment for mUC. A BMI ≥25 was significantly correlated to a higher overall response rate (ORR) (45.4% vs 16.3%, p value=0.020). Patients with BMI ≥30 experienced longer median overall survival (OS) of 24.8 vs 14.4 for 25≤BMI<30 and 8.5 months for BMI <25 (p value=0.012). The ORR was lower in the presence of bone metastases (16% vs 41%, p value=0.006) and liver metastases (16% vs 39%, p value=0.013). Metastatic lymph nodes were correlated with higher ORR (40% vs 20%, p value=0.032). The median OS for bone metastases was 7.3 versus 18 months (p value <0.001). Patients with liver metastases had a median OS of 8.6 versus 15 months (p value=0.006). No difference for lymph nodes metastases (13.5 vs 12.7 months, p value=0.175) was found. NLR ≥4 had worse OS (8.2 vs 17.7 months, p value=0.0001). In multivariate analysis, BMI ≥30, bone metastases, NLR ≥4, performance status ≥2 and line of ICI ≥2 were independent factors for OS. CONCLUSIONS: Our data identified BMI and bone metastases as novel clinical biomarkers that were independently associated with ICI outcomes in mUC. External and prospective validation are warranted.


Assuntos
Carcinoma de Células de Transição , Neoplasias Hepáticas , Neoplasias da Bexiga Urinária , Humanos , Canadá , Inibidores de Checkpoint Imunológico/uso terapêutico , Estudos Retrospectivos
20.
J Hazard Mater ; 470: 134137, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38555671

RESUMO

Petroleum hydrocarbons pose a significant threat to human health and the environment. Biochar has increasingly been utilized for soil remediation. This study investigated the potential of biochar immobilization using Serratia sp. F4 OR414381 for the remediation of petroleum-contaminated soil through a pot experiment conducted over 90 days. The treatments in this study, denoted as IMs (maize straw biochar-immobilized Serratia sp. F4), degraded 82.5% of the total petroleum hydrocarbons (TPH), 59.23% of the aromatic, and 90.1% of the saturated hydrocarbon fractions in the loess soils. During remediation, the soil pH values decreased from 8.76 to 7.33, and the oxidation-reduction potential (ORP) increased from 156 to 229 mV. The treatment-maintained soil nutrients of the IMs were 138.94 mg/kg of NO3- -N and 92.47 mg/kg of available phosphorus (AP), as well as 11.29% of moisture content. The activities of soil dehydrogenase (SDHA) and catalase (CAT) respectively increased by 14% and 15 times compared to the CK treatment. Three key petroleum hydrocarbon degradation genes, including CYP450, AJ025, and xylX were upregulated following IMs treatment. Microbial community analysis revealed that a substantial microbial population of 1.01E+ 09 cells/g soil and oil-degrading bacteria such as Salinimicrobium, Saccharibacteria_genera_incertae_sedis, and Brevundimonas were the dominant genera in IMs treatment. This suggests that the biochar immobilized on Serratia sp. F4 OR414381 improves soil physicochemical properties and enhances interactions among microbial populations, presenting a promising and environmentally friendly approach for the stable and efficient remediation of petroleum-contaminated loess soil.


Assuntos
Biodegradação Ambiental , Carvão Vegetal , Hidrocarbonetos , Petróleo , Serratia , Microbiologia do Solo , Poluentes do Solo , Serratia/metabolismo , Serratia/genética , Poluentes do Solo/metabolismo , Carvão Vegetal/química , Petróleo/metabolismo , Hidrocarbonetos/metabolismo , Poluição por Petróleo , Solo/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...