Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
2.
Nat Commun ; 14(1): 7126, 2023 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-37932255

RESUMO

Age is closely related to human health and disease risks. However, chronologically defined age often disagrees with biological age, primarily due to genetic and environmental variables. Identifying effective indicators for biological age in clinical practice and self-monitoring is important but currently lacking. The human lens accumulates age-related changes that are amenable to rapid and objective assessment. Here, using lens photographs from 20 to 96-year-olds, we develop LensAge to reflect lens aging via deep learning. LensAge is closely correlated with chronological age of relatively healthy individuals (R2 > 0.80, mean absolute errors of 4.25 to 4.82 years). Among the general population, we calculate the LensAge index by contrasting LensAge and chronological age to reflect the aging rate relative to peers. The LensAge index effectively reveals the risks of age-related eye and systemic disease occurrence, as well as all-cause mortality. It outperforms chronological age in reflecting age-related disease risks (p < 0.001). More importantly, our models can conveniently work based on smartphone photographs, suggesting suitability for routine self-examination of aging status. Overall, our study demonstrates that the LensAge index may serve as an ideal quantitative indicator for clinically assessing and self-monitoring biological age in humans.


Assuntos
Aprendizado Profundo , Cristalino , Humanos , Pré-Escolar , Envelhecimento/genética
3.
Genome Biol ; 24(1): 248, 2023 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-37904237

RESUMO

BACKGROUND: The high mutation rate throughout the entire melanoma genome presents a major challenge in stratifying true driver events from the background mutations. Numerous recurrent non-coding alterations, such as those in enhancers, can shape tumor evolution, thereby emphasizing the importance in systematically deciphering enhancer disruptions in melanoma. RESULTS: Here, we leveraged 297 melanoma whole-genome sequencing samples to prioritize highly recurrent regions. By performing a genome-scale CRISPR interference (CRISPRi) screen on highly recurrent region-associated enhancers in melanoma cells, we identified 66 significant hits which could have tumor-suppressive roles. These functional enhancers show unique mutational patterns independent of classical significantly mutated genes in melanoma. Target gene analysis for the essential enhancers reveal many known and hidden mechanisms underlying melanoma growth. Utilizing extensive functional validation experiments, we demonstrate that a super enhancer element could modulate melanoma cell proliferation by targeting MEF2A, and another distal enhancer is able to sustain PTEN tumor-suppressive potential via long-range interactions. CONCLUSIONS: Our study establishes a catalogue of crucial enhancers and their target genes in melanoma growth and progression, and illuminates the identification of novel mechanisms of dysregulation for melanoma driver genes and new therapeutic targeting strategies.


Assuntos
Elementos Facilitadores Genéticos , Melanoma , Humanos , Melanoma/genética , Melanoma/patologia , Mutação
4.
Am J Hum Genet ; 110(9): 1534-1548, 2023 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-37633278

RESUMO

Despite extensive research on global heritability estimation for complex traits, few methods accurately dissect local heritability. A precise local heritability estimate is crucial for high-resolution mapping in genetics. Here, we report the effective heritability estimator (EHE) that can use p values from genome-wide association studies (GWASs) for local heritability estimation by directly converting marginal heritability estimates of SNPs to a non-redundant heritability estimate of a gene or a small genomic region. EHE provides higher accuracy and precision for local heritability estimation among seven compared methods. Importantly, EHE can be applied to estimate the conditional heritability of nearby genes, where redundant heritability among the genes can also be removed further. The conditional estimation can be guided by tissue-specific expression profiles (or other functional scores) to prioritize and quantify more functionally important genes of complex phenotypes. Applying EHE to 42 complex phenotypes from the UK Biobank, we revealed the existence of two types of distinct genetic architectures for various complex phenotypes and found that highly pleiotropic genes are not enriched for more heritability compared to other candidate susceptibility genes. EHE provides an accurate and robust way to dissect the genetic architecture of complex phenotypes.


Assuntos
Estudo de Associação Genômica Ampla , Genômica , Herança Multifatorial/genética , Fenótipo , Polimorfismo de Nucleotídeo Único/genética
5.
J Clin Endocrinol Metab ; 109(1): e356-e369, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-37440564

RESUMO

CONTEXT: Excessive insulin resistance, inadequate insulin compensation, or both could result in gestational diabetes mellitus (GDM). Levels of pigment epithelium-derived factor (PEDF), a novel adipokine that could induce insulin resistance, are high in patients with obesity and diabetes. However, the impact of PEDF in pregnancy remains unknown. OBJECTIVE: This study aimed to elucidate the role of PEDF on insulin resistance and compensatory elevation of insulin levels during normal pregnancy and in patients with GDM. METHODS: In this population-based and cohort study, logistic regression analysis was performed to determine the association of PEDF/adiponectin/leptin levels with the risk of developing GDM and to predict postpartum prediabetes. PEDF protein, PEDF transgenic mice, PEDF knockout mice, and PEDF-neutralized antibodies were used to observe changes in insulin resistance and insulin levels with pregnancy. RESULTS: Plasma PEDF levels were increased in normal pregnancy and higher in GDM women. Higher PEDF levels were associated with the increased risk of developing GDM and emerged as a significant independent determinant of postpartum prediabetes in GDM women. Mechanistically, in vivo and in vitro experiments revealed that PEDF induced insulin resistance by inhibiting the insulin signaling pathway. CONCLUSION: In addition to insulin resistance and upregulated insulin levels in normal pregnancy and GDM, aberrant PEDF levels can serve as a "fingerprint" of metabolic abnormalities during pregnancy. Thus, PEDF is a valuable biomarker but could interfere with the time course for early diagnosis and prognosis of GDM.


Assuntos
Diabetes Gestacional , Resistência à Insulina , Estado Pré-Diabético , Gravidez , Animais , Camundongos , Humanos , Feminino , Adipocinas , Estudos de Coortes , Insulina
6.
Mol Psychiatry ; 28(7): 2913-2921, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37340172

RESUMO

Clinical epidemiological studies have found high co-occurrence between suicide attempts (SA) and opioid use disorder (OUD). However, the patterns of correlation and causation between them are still not clear due to psychiatric confounding. To investigate their cross-phenotype relationship, we utilized raw phenotypes and genotypes from >150,000 UK Biobank samples, and genome-wide association summary statistics from >600,000 individuals with European ancestry. Pairwise association and a potential bidirectional relationship between OUD and SA were evaluated with and without controlling for major psychiatric disease status (e.g., schizophrenia, major depressive disorder, and alcohol use disorder). Multiple statistical and genetics tools were used to perform epidemiological association, genetic correlation, polygenic risk score prediction, and Mendelian randomizations (MR) analyses. Strong associations between OUD and SA were observed at both the phenotypic level (overall samples [OR = 2.94, P = 1.59 ×10-14]; non-psychiatric subgroup [OR = 2.15, P = 1.07 ×10-3]) and the genetic level (genetic correlation rg = 0.38 and 0.5 with or without conditioning on psychiatric traits, respectively). Consistently, increasing polygenic susceptibility to SA is associated with increasing risk of OUD (OR = 1.08, false discovery rate [FDR] =1.71 ×10-3), and similarly, increasing polygenic susceptibility to OUD is associated with increasing risk of SA (OR = 1.09, FDR = 1.73 ×10-6). However, these polygenic associations were much attenuated after controlling for comorbid psychiatric diseases. A combination of MR analyses suggested a possible causal association from genetic liability for SA to OUD risk (2-sample univariable MR: OR = 1.14, P = 0.001; multivariable MR: OR = 1.08, P = 0.001). This study provided new genetic evidence to explain the observed OUD-SA comorbidity. Future prevention strategies for each phenotype needs to take into consideration of screening for the other one.


Assuntos
Transtorno Depressivo Maior , Tentativa de Suicídio , Humanos , Transtorno Depressivo Maior/genética , Transtorno Depressivo Maior/psicologia , Estudo de Associação Genômica Ampla , Análise da Randomização Mendeliana , Fenótipo
7.
Genome Biol ; 24(1): 117, 2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-37189164

RESUMO

BACKGROUND: The variation in the rate at which humans age may be rooted in early events acting through the genomic regions that are influenced by such events and subsequently are related to health phenotypes in later life. The parent-of-origin-effect (POE)-regulated methylome includes regions enriched for genetically controlled imprinting effects (the typical type of POE) and regions influenced by environmental effects associated with parents (the atypical POE). This part of the methylome is heavily influenced by early events, making it a potential route connecting early exposures, the epigenome, and aging. We aim to test the association of POE-CpGs with early and later exposures and subsequently with health-related phenotypes and adult aging. RESULTS: We perform a phenome-wide association analysis for the POE-influenced methylome using GS:SFHS (Ndiscovery = 5087, Nreplication = 4450). We identify and replicate 92 POE-CpG-phenotype associations. Most of the associations are contributed by the POE-CpGs belonging to the atypical class where the most strongly enriched associations are with aging (DNAmTL acceleration), intelligence, and parental (maternal) smoking exposure phenotypes. A proportion of the atypical POE-CpGs form co-methylation networks (modules) which are associated with these phenotypes, with one of the aging-associated modules displaying increased within-module methylation connectivity with age. The atypical POE-CpGs also display high levels of methylation heterogeneity, fast information loss with age, and a strong correlation with CpGs contained within epigenetic clocks. CONCLUSIONS: These results identify the association between the atypical POE-influenced methylome and aging and provide new evidence for the "early development of origin" hypothesis for aging in humans.


Assuntos
Envelhecimento , Epigenoma , Adulto , Humanos , Envelhecimento/genética , Fenótipo , Genômica , Epigenômica , Metilação de DNA , Ilhas de CpG , Epigênese Genética
8.
BMC Med ; 21(1): 179, 2023 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-37170220

RESUMO

BACKGROUND: Oxidative stress (OS) is a key pathophysiological mechanism in Crohn's disease (CD). OS-related genes can be affected by environmental factors, intestinal inflammation, gut microbiota, and epigenetic changes. However, the role of OS as a potential CD etiological factor or triggering factor is unknown, as differentially expressed OS genes in CD can be either a cause or a subsequent change of intestinal inflammation. Herein, we used a multi-omics summary data-based Mendelian randomization (SMR) approach to identify putative causal effects and underlying mechanisms of OS genes in CD. METHODS: OS-related genes were extracted from the GeneCards database. Intestinal transcriptome datasets were collected from the Gene Expression Omnibus (GEO) database and meta-analyzed to identify differentially expressed genes (DEGs) related to OS in CD. Integration analyses of the largest CD genome-wide association study (GWAS) summaries with expression quantitative trait loci (eQTLs) and DNA methylation QTLs (mQTLs) from the blood were performed using SMR methods to prioritize putative blood OS genes and their regulatory elements associated with CD risk. Up-to-date intestinal eQTLs and fecal microbial QTLs (mbQTLs) were integrated to uncover potential interactions between host OS gene expression and gut microbiota through SMR and colocalization analysis. Two additional Mendelian randomization (MR) methods were used as sensitivity analyses. Putative results were validated in an independent multi-omics cohort from the First Affiliated Hospital of Sun Yat-sen University (FAH-SYS). RESULTS: A meta-analysis from six datasets identified 438 OS-related DEGs enriched in intestinal enterocytes in CD from 817 OS-related genes. Five genes from blood tissue were prioritized as candidate CD-causal genes using three-step SMR methods: BAD, SHC1, STAT3, MUC1, and GPX3. Furthermore, SMR analysis also identified five putative intestinal genes, three of which were involved in gene-microbiota interactions through colocalization analysis: MUC1, CD40, and PRKAB1. Validation results showed that 88.79% of DEGs were replicated in the FAH-SYS cohort. Associations between pairs of MUC1-Bacillus aciditolerans and PRKAB1-Escherichia coli in the FAH-SYS cohort were consistent with eQTL-mbQTL colocalization. CONCLUSIONS: This multi-omics integration study highlighted that OS genes causal to CD are regulated by DNA methylation and host-microbiota interactions. This provides evidence for future targeted functional research aimed at developing suitable therapeutic interventions and disease prevention.


Assuntos
Doença de Crohn , Microbioma Gastrointestinal , Humanos , Doença de Crohn/genética , Estudo de Associação Genômica Ampla , Metilação de DNA/genética , Microbioma Gastrointestinal/genética , Análise da Randomização Mendeliana/métodos , Multiômica , Transcriptoma , Inflamação , Estresse Oxidativo/genética
9.
Genome Biol ; 24(1): 76, 2023 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-37069653

RESUMO

Whole -genome sequencing projects of millions of subjects contain enormous genotypes, entailing a huge memory burden and time for computation. Here, we present GBC, a toolkit for rapidly compressing large-scale genotypes into highly addressable byte-encoding blocks under an optimized parallel framework. We demonstrate that GBC is up to 1000 times faster than state-of-the-art methods to access and manage compressed large-scale genotypes while maintaining a competitive compression ratio. We also showed that conventional analysis would be substantially sped up if built on GBC to access genotypes of a large population. GBC's data structure and algorithms are valuable for accelerating large-scale genomic research.


Assuntos
Compressão de Dados , Software , Humanos , Algoritmos , Genótipo , Compressão de Dados/métodos , Genômica/métodos
10.
Nat Commun ; 14(1): 1131, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36854672

RESUMO

Mendelian randomization using GWAS summary statistics has become a popular method to infer causal relationships across complex diseases. However, the widespread pleiotropy observed in GWAS has made the selection of valid instrumental variables problematic, leading to possible violations of Mendelian randomization assumptions and thus potentially invalid inferences concerning causation. Furthermore, current MR methods can examine causation in only one direction, so that two separate analyses are required for bi-directional analysis. In this study, we propose a ststistical framework, MRCI (Mixture model Reciprocal Causation Inference), to estimate reciprocal causation between two phenotypes simultaneously using the genome-scale summary statistics of the two phenotypes and reference linkage disequilibrium information. Simulation studies, including strong correlated pleiotropy, showed that MRCI obtained nearly unbiased estimates of causation in both directions, and correct Type I error rates under the null hypothesis. In applications to real GWAS data, MRCI detected significant bi-directional and uni-directional causal influences between common diseases and putative risk factors.


Assuntos
Análise da Randomização Mendeliana , Causalidade , Fatores de Risco , Simulação por Computador , Desequilíbrio de Ligação
11.
bioRxiv ; 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36711749

RESUMO

Variation in the rate at which humans age may be rooted in early life events acting through genomic regions that are influenced by such events and subsequently are related to health phenotypes in later life. The parent-of-origin-effect (POE)-regulated methylome includes regions either enriched for genetically controlled imprinting effects (the typical type of POE) or atypical POE introduced by environmental effects associated with parents. This part of the methylome is heavily influenced by early life events, making it a potential route connecting early environmental exposures, the epigenome and the rate of aging. Here, we aim to test the association of POE-influenced methylation of CpG dinucleotides (POE-CpG sites) with early and later environmental exposures and subsequently with health-related phenotypes and adult aging phenotypes. We do this by performing phenome-wide association analyses of the POE-influenced methylome using a large family-based population cohort (GS:SFHS, Ndiscovery=5,087, Nreplication=4,450). At the single CpG level, 92 associations of POE-CpGs with phenotypic variation were identified and replicated. Most of the associations were contributed by POE-CpGs belonging to the atypical class and the most strongly enriched associations were with aging (DNAmTL acceleration), intelligence and parental (maternal) smoking exposure phenotypes. We further found that a proportion of the atypical-POE-CpGs formed co-methylation networks (modules) which are associated with these phenotypes, with one of the aging-associated modules displaying increased internal module connectivity (strength of methylation correlation across constituent CpGs) with age. Atypical POE-CpGs also displayed high levels of methylation heterogeneity and epigenetic drift (i.e. information loss with age) and a strong correlation with CpGs contained within epigenetic clocks. These results identified associations between the atypical-POE-influenced methylome and aging and provided new evidence for the "early development of origin" hypothesis for aging in humans.

12.
Comput Struct Biotechnol J ; 20: 3639-3652, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35891796

RESUMO

Increasing evidence shows that genetic interaction across the entire genome may explain a non-trivial fraction of genetic diseases. Digenic interaction is the simplest manifestation of genetic interaction among genes. However, systematic exploration of digenic interactive effects on the whole genome is often discouraged by the high dimension burden. Thus, numerous digenic interactions are yet to be identified for many diseases. Here, we propose a Digenic Interaction Effect Predictor (DIEP), an accurate machine-learning approach to identify the genome-wide pathogenic coding gene pairs with digenic interaction effects. This approach achieved high accuracy and sensitivity in independent testing datasets, outperforming another gene-level digenic predictor (DiGePred). DIEP was also able to discriminate digenic interaction effect from bi-locus effects dual molecular diagnosis (pseudo-digenic). Using DIEP, we provided a valuable resource of genome-wide digenic interactions and demonstrated the enrichment of the digenic interaction effect in Mendelian and Oligogenic diseases. Therefore, DIEP will play a useful role in facilitating the genomic mapping of interactive causal genes for human diseases.

13.
Front Neurosci ; 16: 945454, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35844209

RESUMO

Due to the dyeing process, learning samples used for color prediction of pre-colored fiber blends should be re-prepared once the batches of the fiber change. The preparation of the sample is time-consuming and leads to manpower and material waste. The two-constant Kubelka-Munk theory is selected in this article to investigate the feasibility to minimize and optimize the learning samples for the theory since it has the highest prediction accuracy and moderate learning sample size requirement among all the color prediction models. Results show that two samples, namely, a masstone obtained by 100% pre-colored fiber and a tint mixed by 40% pre-colored fiber and 60% white fiber, are enough to determine the absorption and scattering coefficients of a pre-colored fiber. In addition, the optimal sample for the single-constant Kubelka-Munk theory is also explored.

14.
Front Genet ; 13: 865313, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35846154

RESUMO

The usage of expressed somatic mutations may have a unique advantage in identifying active cancer driver mutations. However, accurately calling mutations from RNA-seq data is difficult due to confounding factors such as RNA-editing, reverse transcription, and gap alignment. In the present study, we proposed a framework (named RNA-SSNV, https://github.com/pmglab/RNA-SSNV) to call somatic single nucleotide variants (SSNV) from tumor bulk RNA-seq data. Based on a comprehensive multi-filtering strategy and a machine-learning classification model trained with comprehensively curated features, RNA-SSNV achieved the best precision-recall rate (0.880-0.884) in a testing dataset and robustly retained 0.94 AUC for the precision-recall curve in three validation adult-based TCGA (The Cancer Genome Atlas) datasets. We further showed that the somatic mutations called by RNA-SSNV tended to have a higher functional impact and therapeutic power in known driver genes. Furthermore, VAF (variant allele fraction) analysis revealed that subclonal harboring expressed mutations had evolutional selection advantage and RNA had higher detection power to rescue DNA-omitted mutations. In sum, RNA-SSNV will be a useful approach to accurately call expressed somatic mutations for a more insightful analysis of cancer drive genes and carcinogenic mechanisms.

15.
Nucleic Acids Res ; 50(W1): W568-W576, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35639771

RESUMO

Most complex disease-associated loci mapped by genome-wide association studies (GWAS) are located in non-coding regions. It remains elusive which genes the associated loci regulate and in which tissues/cell types the regulation occurs. Here, we present PCGA (https://pmglab.top/pcga), a comprehensive web server for jointly estimating both associated tissues/cell types and susceptibility genes for complex phenotypes by GWAS summary statistics. The web server is built on our published method, DESE, which represents an effective method to mutually estimate driver tissues and genes by integrating GWAS summary statistics and transcriptome data. By collecting and processing extensive bulk and single-cell RNA sequencing datasets, PCGA has included expression profiles of 54 human tissues, 2,214 human cell types and 4,384 mouse cell types, which provide the basis for estimating associated tissues/cell types and genes for complex phenotypes. We develop a framework to sequentially estimate associated tissues and cell types of a complex phenotype according to their hierarchical relationships we curated. Meanwhile, we construct a phenotype-cell-gene association landscape by estimating the associated tissues/cell types and genes of 1,871 public GWASs. The association landscape is generally consistent with biological knowledge and can be searched and browsed at the PCGA website.


Assuntos
Células , Computadores , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Internet , Fenótipo , Software , Animais , Humanos , Camundongos , Estudo de Associação Genômica Ampla/métodos , Transcriptoma , Células/metabolismo , Especificidade de Órgãos
16.
Front Cell Infect Microbiol ; 12: 871545, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35493725

RESUMO

Schistosoma japonicum infections, which lead to local inflammatory responses to schistosome eggs trapped in host tissues, can result in long-term, severe complications. The development of schistosomiasis may result from a complex interaction between the pathogenic, environmental, and host genetic components. Notably, the genetic factors that influence the development of schistosomiasis complications are poorly understood. Here we performed a genome-wide association study on multiple schistosomiasis-related phenotypes of 637 unrelated schistosomiasis patients in the Chinese population. Among three indicators of liver damage, we identified two novel, genome-wide significant single-nucleotide polymorphisms (SNPs) rs34486793 (P = 1.415 × 10-8) and rs2008259 (P = 6.78 × 10-8) at locus 14q32.2 as well as a gene, PMEPA1, at 20q13.31 (index rs62205791, P = 6.52 × 10-7). These were significantly associated with serum levels of hyaluronic acid (HA). In addition, RASIP1 and MAMSTR at 19q13.33 (index rs62132778, P = 1.72 × 10-7) were significantly associated with serum levels of aspartate aminotransferase (AST), and TPM1 at 15q22.2 (index rs12442303, P = 4.39 × 10-7) was significantly associated with serum levels of albumin. In schistosomiasis clinical signs, ITIH4 at 3p21.1 (index rs2239548) was associated with portal vein diameter (PVD) class, an indicator of portal hypertension, and OGDHL at 10q11.23 (index rs1258172) was related to ascites grade. We also detected an increased expression of these six genes in livers of mice with severe schistosomiasis. Summary data-based Mendelian randomization analyses indicated that ITIH4, PMEPA1 and MAMSTR were pleiotropically associated with PVD class, HA and AST, respectively.


Assuntos
Esquistossomose Japônica , Esquistossomose , Animais , China/epidemiologia , Estudo de Associação Genômica Ampla , Humanos , Fígado/patologia , Proteínas de Membrana/metabolismo , Camundongos , Esquistossomose Japônica/metabolismo , Esquistossomose Japônica/patologia
17.
Am J Hum Genet ; 109(5): 838-856, 2022 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-35460606

RESUMO

Isolating the causal genes from numerous genetic association signals in genome-wide association studies (GWASs) of complex phenotypes remains an open and challenging question. In the present study, we proposed a statistical approach, the effective-median-based Mendelian randomization (MR) framework, for inferring the causal genes of complex phenotypes with the GWAS summary statistics (named EMIC). The effective-median method solved the high false-positive issue in the existing MR methods due to either correlation among instrumental variables or noises in approximated linkage disequilibrium (LD). EMIC can further perform a pleiotropy fine-mapping analysis to remove possible false-positive estimates. With the usage of multiple cis-expression quantitative trait loci (eQTLs), EMIC was also more powerful than the alternative methods for the causal gene inference in the simulated datasets. Furthermore, EMIC rediscovered many known causal genes of complex phenotypes (schizophrenia, bipolar disorder, and total cholesterol) and reported many new and promising candidate causal genes. In sum, this study provided an efficient solution to discriminate the candidate causal genes from vast amounts of GWAS signals with eQTLs. EMIC has been implemented in our integrative software platform KGGSEE.


Assuntos
Estudo de Associação Genômica Ampla , Análise da Randomização Mendeliana , Estudo de Associação Genômica Ampla/métodos , Humanos , Desequilíbrio de Ligação , Análise da Randomização Mendeliana/métodos , Fenótipo , Polimorfismo de Nucleotídeo Único/genética , Locos de Características Quantitativas/genética
18.
Elife ; 112022 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-35412455

RESUMO

Linkage disequilibrium and disease-associated variants in the non-coding regions make it difficult to distinguish the truly associated genes from the redundantly associated genes for complex diseases. In this study, we proposed a new conditional gene-based framework called eDESE that leveraged an improved effective chi-squared statistic to control the type I error rates and remove the redundant associations. eDESE initially performed the association analysis by mapping variants to genes according to their physical distance. We further demonstrated that the isoform-level eQTLs could be more powerful than the gene-level eQTLs in the association analysis using a simulation study. Then the eQTL-guided strategies, that is, mapping variants to genes according to their gene/isoform-level variant-gene cis-eQTLs associations, were also integrated with eDESE. We then applied eDESE to predict the potential susceptibility genes of schizophrenia and found that the potential susceptibility genes were enriched with many neuronal or synaptic signaling-related terms in the Gene Ontology knowledgebase and antipsychotics-gene interaction terms in the drug-gene interaction database (DGIdb). More importantly, seven potential susceptibility genes identified by eDESE were the target genes of multiple antipsychotics in DrugBank. Comparing the potential susceptibility genes identified by eDESE and other benchmark approaches (i.e., MAGMA and S-PrediXcan) implied that strategy based on the isoform-level eQTLs could be an important supplement for the other two strategies (physical distance and gene-level eQTLs). We have implemented eDESE in our integrative platform KGGSEE (http://pmglab.top/kggsee/#/) and hope that eDESE can facilitate the prediction of candidate susceptibility genes and isoforms for complex diseases in a multi-tissue context.


Assuntos
Predisposição Genética para Doença , Locos de Características Quantitativas , Esquizofrenia , Antipsicóticos/uso terapêutico , Predisposição Genética para Doença/genética , Estudo de Associação Genômica Ampla , Humanos , Polimorfismo de Nucleotídeo Único , Isoformas de Proteínas/genética , Locos de Características Quantitativas/genética , Esquizofrenia/genética
19.
Nucleic Acids Res ; 50(6): e34, 2022 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-34931221

RESUMO

Identifying rare variants that contribute to complex diseases is challenging because of the low statistical power in current tests comparing cases with controls. Here, we propose a novel and powerful rare variants association test based on the deviation of the observed mutation burden of a gene in cases from a baseline predicted by a weighted recursive truncated negative-binomial regression (RUNNER) on genomic features available from public data. Simulation studies show that RUNNER is substantially more powerful than state-of-the-art rare variant association tests and has reasonable type 1 error rates even for stratified populations or in small samples. Applied to real case-control data, RUNNER recapitulates known genes of Hirschsprung disease and Alzheimer's disease missed by current methods and detects promising new candidate genes for both disorders. In a case-only study, RUNNER successfully detected a known causal gene of amyotrophic lateral sclerosis. The present study provides a powerful and robust method to identify susceptibility genes with rare risk variants for complex diseases.


Assuntos
Predisposição Genética para Doença , Variação Genética , Modelos Genéticos , Software , Estudos de Casos e Controles , Simulação por Computador , Humanos , Mutação
20.
Bioact Mater ; 6(11): 3766-3781, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33898877

RESUMO

The mechanism underlying neurogenesis during embryonic spinal cord development involves a specific ligand/receptor interaction, which may be help guide neuroengineering to boost stem cell-based neural regeneration for the structural and functional repair of spinal cord injury. Herein, we hypothesized that supplying spinal cord defects with an exogenous neural network in the NT-3/fibroin-coated gelatin sponge (NF-GS) scaffold might improve tissue repair efficacy. To test this, we engineered tropomyosin receptor kinase C (TrkC)-modified neural stem cell (NSC)-derived neural network tissue with robust viability within an NF-GS scaffold. When NSCs were genetically modified to overexpress TrkC, the NT-3 receptor, a functional neuronal population dominated the neural network tissue. The pro-regenerative niche allowed the long-term survival and phenotypic maintenance of the donor neural network tissue for up to 8 weeks in the injured spinal cord. Additionally, host nerve fibers regenerated into the graft, making synaptic connections with the donor neurons. Accordingly, motor function recovery was significantly improved in rats with spinal cord injury (SCI) that received TrkC-modified NSC-derived neural network tissue transplantation. Together, the results suggested that transplantation of the neural network tissue formed in the 3D bioactive scaffold may represent a valuable approach to study and develop therapies for SCI.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...