Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 15(9)2022 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-35591315

RESUMO

The mineralogical structure of flux films is a critical factor in controlling heat transfer in the mold and avoiding the longitudinal cracking of slabs during the continuous casting of peritectic steel. In this study, the layered structure, crystallization ratio, mineralogical species, and morphology features of flux films were characterized by optical microscopy, X-ray diffraction, and electron-probe microanalysis. Microstructural observation revealed that the normal flux films for peritectic steels present a multilayered structure and high crystallization ratio (60~90 vol%), mainly composed of well-developed crystalline akermanite and cuspidine. In contrast, the films with outstanding flux characteristics with abundant longitudinal cracks on the slab surface have a low crystallization ratio (<50 vol%) or vast crystallite content (>80 vol%). Furthermore, heat transfer analysis showed that the low crystallization ratio and the vast crystallite content of flux films worsen the heat transfer rate or uniformity in the mold, whereas the appropriate thickness and cuspidine content of flux films can improve the heat transfer performance. From the above results, it is concluded that using strong crystalline flux to obtain the ideal mineral phase structure of flux film is one of the important measures for reducing longitudinal cracks during continuous casting of peritectic steel slabs.

2.
Front Oncol ; 12: 860532, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35311106

RESUMO

Since the 20th century, cancer has been a growing threat to human health. Cancer is a malignant tumor with high clinical morbidity and mortality, and there is a high risk of recurrence after surgery. At the same time, the diagnosis of whether the cancer is in situ recurrence is crucial for further treatment of cancer patients. According to statistics, about 90% of cancer-related deaths are due to metastasis of primary tumor cells. Therefore, the study of the location of cancer recurrence and its influencing factors is of great significance for the clinical diagnosis and treatment of cancer. In this paper, we propose an assisted diagnosis model for cancer patients based on federated learning. In terms of data, the influencing factors of cancer recurrence and the special needs of data samples required by federated learning were comprehensively considered. Six first-level impact indicators were determined, and the historical case data of cancer patients were further collected. Based on the federated learning framework combined with convolutional neural network, various physical examination indicators of patients were taken as input. The recurrence time and recurrence location of patients were used as output to construct an auxiliary diagnostic model, and linear regression, support vector regression, Bayesling regression, gradient ascending tree and multilayer perceptrons neural network algorithm were used as comparison algorithms. CNN's federated prediction model based on improved under the condition of the joint modeling and simulation on the five types of cancer data accuracy reached more than 90%, the accuracy is better than single modeling machine learning tree model and linear model and neural network, the results show that auxiliary diagnosis model based on the study of cancer patients in assisted the doctor in the diagnosis of patients, As well as effectively provide nutritional programs for patients and have application value in prolonging the life of patients, it has certain guiding significance in the field of medical cancer rehabilitation.

3.
Cell Reprogram ; 21(3): 152-161, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31145652

RESUMO

The abnormal deposition of amyloid-ß peptide, a major component of senile plaques, has been reported to be the major cause of neuronal cell death and cognitive impairment in Alzheimer's disease (AD). Adult neurogenesis is related to the amelioration of impaired neurons and cognitive impairment. In the research, we investigated the function of curcumin on endogenous neural stem cells (NSCs) and hippocampal neurogenesis in mice. APP/PS1 transgenic mice as animal models were treated with curcumin, and a significant improvement in learning and memory function was observed. The improvement was associated with a significant increase in the number of new neural stem cells (BrdU+/Nestin+) and newborn neurons (NeuN/kI67+) in the hippocampal region and decreased the number of apoptotic neurons (TUNEL+ and Caspase-3/NeuN+). These results suggested that curcumin activated NSCs proliferation, improved neurogenesis, and ameliorated cognitive impairment of AD mice. Then, we identified that curcumin upregulated the expression of self-renewal genes, Notch1 and Hes1, and augmentation of CDK4, Cyclin D1, NICD, and Hes1 protein. As Notch activity was blocked by the DAPT, the related proteins were downregulated, and the initiating cell proliferation of curcumin was abolished. These results might suggest that the function of curcumin was dependent on Notch signaling pathway.


Assuntos
Proliferação de Células , Curcumina/farmacologia , Células-Tronco Neurais/efeitos dos fármacos , Receptores Notch/metabolismo , Transdução de Sinais , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Doença de Alzheimer/fisiopatologia , Animais , Modelos Animais de Doenças , Feminino , Masculino , Camundongos , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/fisiologia , Neurogênese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...