Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 127
Filtrar
1.
Huan Jing Ke Xue ; 45(7): 4196-4205, 2024 Jul 08.
Artigo em Chinês | MEDLINE | ID: mdl-39022966

RESUMO

Taking the typical yellow soil in Guizhou as the research object, four treatments were set up: no fertilization (CK), single application of chemical fertilizer (NP), 50% organic fertilizer instead of chemical nitrogen fertilizer [1/2(NPM)], and 100% organic fertilizer instead of chemical nitrogen fertilizer (M). The effects of organic fertilizer instead of chemical nitrogen fertilizer on organic carbon and its active components, soil carbon pool management index, soil enzyme activity, and maize and soybean yield in yellow soil were studied in order to provide theoretical basis for scientific fertilization and soil quality improvement in this area. The results showed that the replacement of chemical nitrogen fertilizer by organic fertilizer significantly increased soil pH, organic carbon (SOC), total nitrogen (TN) content, and C/N ratio. Compared with those in the CK and NP treatments, the content and distribution ratio of soil active organic carbon components and soil carbon pool management index (CPMI) were improved by replacing chemical nitrogen fertilizer with organic fertilizer, and the effect of replacing chemical nitrogen fertilizer with 50% organic fertilizer was the best. Compared with those in the NP treatment, the 1/2 (NPM) treatment significantly increased the contents of soil readily oxidizable organic carbon (ROC333, ROC167), dissolved organic carbon (DOC), and microbial biomass carbon (MBC) by 22.90%, 8.10%, 29.32%, and 23.22%, respectively. Compared with those under the CK and NP treatments, organic fertilizer instead of chemical nitrogen fertilizer increased soil enzyme activities. The activities of catalase, urease, sucrase, and phosphatase in the 1/2 (NPM) treatment were significantly increased by 21.89%, 8.24%, 34.91%, and 18.78%, respectively, compared with those in the NP treatment. Compared with that of the NP treatment, the maize yield of the 1/2 (NPM) and M treatments was significantly increased by 44.15% and 17.39%, respectively. There was no significant difference in soybean yield among different fertilization treatments. Correlation analysis showed that soil SOC was significantly positively correlated with ROC333, ROC167, ROC33, DOC, MBC, and soil active organic carbon components, and CPMI was significantly positively correlated with soil organic carbon and its active components (P<0.01). Corn yield was significantly positively correlated with soil enzyme activity, CPMI, total organic carbon, and its active components (P<0.05). Therefore, from the perspective of yield increase and soil fertility, 50% organic fertilizer instead of chemical nitrogen fertilizer was conducive to improving soil quality and soil fertility, which is the key fertilization technology to achieve a high yield of crops in the yellow soil area of Anshun, Guizhou.


Assuntos
Carbono , Fertilizantes , Glycine max , Nitrogênio , Compostos Orgânicos , Solo , Zea mays , Solo/química , Zea mays/crescimento & desenvolvimento , Glycine max/crescimento & desenvolvimento , China , Biomassa , Produtos Agrícolas/crescimento & desenvolvimento
2.
Phys Rev Lett ; 132(24): 240402, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38949339

RESUMO

In the context of measurement-induced entanglement phase transitions, the influence of quantum noises, which are inherent in real physical systems, is of great importance and experimental relevance. In this Letter, we present a comprehensive theoretical analysis of the effects of both temporally uncorrelated and correlated quantum noises on entanglement generation and information protection. This investigation reveals that entanglement within the system follows q^{-1/3} scaling for both types of quantum noises, where q represents the noise probability. The scaling arises from the Kardar-Parisi-Zhang fluctuation with effective length scale L_{eff}∼q^{-1}. More importantly, the information protection timescales of the steady states are explored and shown to follow q^{-1/2} and q^{-2/3} scaling for temporally uncorrelated and correlated noises, respectively. The former scaling can be interpreted as a Hayden-Preskill protocol, while the latter is a direct consequence of Kardar-Parisi-Zhang fluctuations. We conduct extensive numerical simulations using stabilizer formalism to support the theoretical understanding. This Letter not only contributes to a deeper understanding of the interplay between quantum noises and measurement-induced phase transition but also provides a new perspective to understand the effects of Markovian and non-Markovian noises on quantum computation.

3.
Brain Behav ; 14(7): e3600, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38988142

RESUMO

OBJECTIVE: In this study, multimodal magnetic resonance imaging (MRI) imaging was used to deeply analyze the changes of hippocampal subfields perfusion and function in patients with type 2 diabetes mellitus (T2DM), aiming to provide image basis for the diagnosis of hippocampal-related nerve injury in patients with T2DM. METHODS: We recruited 35 patients with T2DM and 40 healthy control subjects (HCs). They underwent resting-state functional MRI (rs-fMRI), arterial spin labeling (ASL) scans, and a series of cognitive tests. Then, we compared the differences of two groups in the cerebral blood flow (CBF) value, amplitude of low-frequency fluctuation (ALFF) value, and regional homogeneity (ReHo) value of the bilateral hippocampus subfields. RESULTS: The CBF values of cornu ammonis area 1 (CA1), dentate gyrus (DG), and subiculum in the right hippocampus of T2DM group were significantly lower than those of HCs. The ALFF values of left hippocampal CA3, subiculum, and bilateral hippocampus amygdala transition area (HATA) were higher than those of HCs in T2DM group. The ReHo values of CA3, DG, subiculum, and HATA in the left hippocampus of T2DM group were higher than those of HCs. In the T2DM group, HbAc1 and FINS were negatively correlated with imaging characteristics in some hippocampal subregions. CONCLUSION: This study indicates that T2DM patients had decreased perfusion in the CA1, DG, and subiculum of the right hippocampus, and the right hippocampus subiculum was associated with chronic hyperglycemia. Additionally, we observed an increase in spontaneous neural activity within the left hippocampal CA3, subiculum, and bilateral HATA regions, as well as an enhanced local neural coordination in the left hippocampal CA3, DG, HATA, and subiculum among patients with type 2 diabetes, which may reflect an adaptive compensation for cognitive decline. However, this compensation may decline with the exacerbation of metabolic disorders.


Assuntos
Circulação Cerebrovascular , Diabetes Mellitus Tipo 2 , Hipocampo , Imageamento por Ressonância Magnética , Humanos , Diabetes Mellitus Tipo 2/fisiopatologia , Diabetes Mellitus Tipo 2/diagnóstico por imagem , Masculino , Feminino , Hipocampo/diagnóstico por imagem , Hipocampo/fisiopatologia , Circulação Cerebrovascular/fisiologia , Pessoa de Meia-Idade , Adulto , Descanso/fisiologia , Disfunção Cognitiva/fisiopatologia , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/diagnóstico por imagem
4.
Artigo em Inglês | MEDLINE | ID: mdl-38814831

RESUMO

Aims: Downregulation of nuclear factor erythroid 2-related factor 2 (Nrf2) contributes to doxorubicin (DOX)-induced myocardial oxidative stress, and inhibition of mucosa-associated lymphoid tissue lymphoma translocation protein 1 (MALT1) increased Nrf2 protein level in rat heart suffering ischemia/reperfusion, indicating a connection between MALT1 and Nrf2. This study aims to explore the role of MALT1 in DOX-induced myocardial oxidative stress and the underlying mechanisms. Results: The mice received a single injection of DOX (15 mg/kg, i.p.) to induce myocardial oxidative stress, evidenced by increases in the levels of reactive oxidative species as well as decreases in the activities of antioxidative enzymes, concomitant with a downregulation of Nrf2; these phenomena were reversed by MALT1 inhibitor. Similar phenomena were observed in DOX-induced oxidative stress in cardiomyocytes. Mechanistically, knockdown or inhibition of MALT1 notably attenuated the interaction between Nrf2 and MALT1 and decreased the k48-linked ubiquitination of Nrf2. Furthermore, inhibition or knockdown of calcium/calmodulin-dependent protein kinase II (CaMKII-δ) reduced the phosphorylation of caspase recruitment domain-containing protein 11 (CARD11), subsequently disrupted the assembly of CARD11, B cell lymphoma 10 (BCL10), and MALT1 (CBM) complex, and reduced the MALT1-dependent k48-linked ubiquitination of Nrf2 in DOX-treated mice or cardiomyocytes. Innovation and Conclusion: The E3 ubiquitin ligase function of MALT1 accounts for the downregulation of Nrf2 and aggravation of myocardial oxidative stress in DOX-treated mice, and CaMKII-δ-dependent phosphorylation of CARD11 triggered the assembly of CBM complex and the subsequent activation of MALT1.

5.
J Cancer Res Clin Oncol ; 150(5): 274, 2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38795238

RESUMO

PURPOSE: The vital function of eloquent and deep brain areas necessitates precise treatment for tumors located in these regions. Fluorescein-guided surgery (FGS) has been widely used for high-grade gliomas (HGGs) resection. Nevertheless, the safety and efficacy of utilizing this technique for resecting brain tumors located in eloquent and deep-seated areas remain uncertain. This study aims to assess the safety and extent of resection of HGGs in these challenging tumors with fluorescein and explore its impact on patient survival. METHODS: A retrospective analysis was conducted on the clinical and radiological data of 67 consecutive patients with eloquent or deep-seated HGGs who underwent surgery between January 2020 and June 2023. Lacroix functional location grade was used to determine the eloquence of the tumors. The comparison between the fluorescence-guided surgery group (FGS, n = 32) and the conventional white-light microscopic surgery group (non-FGS, n = 35) included assessments of extent of resection (EOR), rates of gross total resection (GTR, 100%) and near-total resection (NTR, 99 to 98%), postoperative Neurologic Assessment in Neuro-Oncology (NANO) scores, overall survival (OS), and progression-free survival (PFS), to evaluate the safety and efficacy of fluorescein-guided technology in tumor resection at these specific locations. RESULTS: Baseline of demographics, lesion location, and pathology showed no significant difference between the two groups. GTR of the FGS group was higher than the non-FGS group (84.4% vs. 60.0%, OR 3.60, 95% CI 1.18-10.28, p < 0.05). The FGS group also showed higher GTR + NTR (EOR ≥ 98%) than the non-FGS group (93.8% vs. 65.7%, OR 7.83, 95% CI 1.86-36.85, p < 0.01). 87.0% of eloquent tumors (Lacroix grade III) in the FGS group achieved GTR + NTR, compared to 52.2% of control group (OR 6.11, 95% CI 1.50-22.78, p < 0.05). For deep-seated tumors, the rate of GTR + NTR in the two groups were 91.7% and 53.3%, respectively (OR 9.62, 95% CI 1.05-116.50, p < 0.05). No significant difference of the preoperative NANO score of the two groups was found. The postoperative NANO score of the FGS group was significantly lower than the non-FGS group (2.56 ± 1.29 vs. 3.43 ± 1.63, p < 0.05). Median OS of the FGS group was 4.2 months longer than the non-FGS group despite no statistical difference (18.2 months vs. 14.0 months, HR 0.63, 95% CI 0.36-1.11, p = 0.112), while PSF was found significantly longer in FGS patients than those of the non-FGS group (11.2 months vs. 7.7 months, HR 0.59, 95% CI 0.35-0.99, p < 0.05). CONCLUSION: Sodium fluorescein-guided surgery for high-grade gliomas in eloquent and deep-seated brain regions enables more extensive resection while preserving neurologic function and improve patient survival.


Assuntos
Neoplasias Encefálicas , Fluoresceína , Glioma , Humanos , Feminino , Masculino , Glioma/cirurgia , Glioma/patologia , Pessoa de Meia-Idade , Estudos Retrospectivos , Neoplasias Encefálicas/cirurgia , Neoplasias Encefálicas/patologia , Adulto , Idoso , Cirurgia Assistida por Computador/métodos , Procedimentos Neurocirúrgicos/métodos , Adulto Jovem , Gradação de Tumores
6.
Hum Reprod ; 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38725195

RESUMO

STUDY QUESTION: Can exposure to palmitic acid (PA), a common saturated fatty acid, modulate autophagy in both human and mouse trophoblast cells through the regulation of acyl-coenzyme A-binding protein (ACBP)? SUMMARY ANSWER: PA exposure before and during pregnancy impairs placental development through mechanisms involving placental autophagy and ACBP expression. WHAT IS KNOWN ALREADY: High-fat diets, including PA, have been implicated in adverse effects on human placental and fetal development. Despite this recognition, the precise molecular mechanisms underlying these effects are not fully understood. STUDY DESIGN, SIZE, DURATION: Extravillous trophoblast (EVT) cell line HTR-8/SVneo and human trophoblast stem cell (hTSC)-derived EVT (hTSCs-EVT) were exposed to PA or vehicle control for 24 h. Female wild-type C57BL/6 mice were divided into PA and control groups (n = 10 per group) and subjected to a 12-week dietary intervention. Afterward, they were mated with male wild-type C57BL/6 mice and euthanized on Day 14 of gestation. Female ACBPflox/flox mice were also randomly assigned to control and PA-exposed groups (each with 10 mice), undergoing the same dietary intervention and mating with ACBPflox/floxELF5-Cre male mice, followed by euthanasia on Day 14 of gestation. The study assessed the effects of PA on mouse embryonic development and placental autophagy. Additionally, the role of ACBP in the pathogenesis of PA-induced placental toxicity was investigated. PARTICIPANTS/MATERIALS, SETTING, METHODS: The findings were validated using real-time PCR, Western blot, immunofluorescence, transmission electron microscopy, and shRNA knockdown approaches. MAIN RESULTS AND THE ROLE OF CHANCE: Exposure to PA-upregulated ACBP expression in both human HTR-8/SVneo cells and hTSCs-EVT, as well as in mouse placenta. PA exposure also induced autophagic dysfunction in HTR-8/SVneo cells, hTSCs-EVT, and mouse placenta. Through studies on ACBP placental conditional knockout mice and ACBP knockdown human trophoblast cells, it was revealed that reduced ACBP expression led to trophoblast malfunction and affected the expression of autophagy-related proteins LC3B-II and P62, thereby impacting embryonic development. Conversely, ACBP knockdown partially mitigated PA-induced impairment of placental trophoblast autophagy, observed both in vitro in human trophoblast cells and in vivo in mice. LARGE SCALE DATA: N/A. LIMITATIONS, REASONS FOR CAUTION: Primary EVT cells from early pregnancy are fragile, limiting research use. Maintaining their viability is tough, affecting data reliability. The study lacks depth to explore PA diet cessation effects after 12 weeks. Without follow-up, understanding postdiet impacts on pregnancy stages is incomplete. Placental abnormalities linked to elevated PA diet in embryos lack confirmation due to absence of control groups. Clarifying if issues stem solely from PA exposure is difficult without proper controls. WIDER IMPLICATIONS OF THE FINDINGS: Consuming a high-fat diet before and during pregnancy may result in complications or challenges in successfully carrying the pregnancy to term. It suggests that such dietary habits can have detrimental effects on the health of both the mother and the developing fetus. STUDY FUNDING/COMPETING INTEREST(S): This work was supported in part by the National Natural Science Foundation of China (82171664, 82301909) and the Natural Science Foundation of Chongqing Municipality of China (CSTB2022NS·CQ-LZX0062, cstc2019jcyj-msxmX0749, and cstc2021jcyj-msxmX0236). The authors declare that they have no conflict of interest. TRIAL REGISTRATION NUMBER: N/A.

7.
Foods ; 13(7)2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38611406

RESUMO

In this work, a gelatin/chia mucilage (GN/CM) composite coating material doped with Lactococcus lactis (LS) was developed for strawberry preservation applications. The results of the scanning electron microscope and Fourier transform infrared spectroscopy stated that the enhanced molecular interaction between the CM and GN matrix strengthened the density and compactness of the GN film. Antifungal results indicated that the addition of LS significantly (p < 0.05) improved the ability of the GN coating to inhibit the growth of Botrytis cinerea (inhibition percentage = 62.0 ± 4.6%). Adding CM significantly (p < 0.05) decreased the water vapour permeability and oxygen permeability of the GN coating by 32.7 ± 4.0% and 15.76 ± 1.89%, respectively. In addition, the incorporated CM also significantly (p < 0.05) improved the LS viability and elongation at break of the film by 13.11 ± 2.05% and 42.58 ± 1.21%, respectively. The GN/CM/LS composite coating material also exhibited an excellent washability. The results of this study indicated that the developed GN/CM/LS coating could be used as a novel active material for strawberry preservation.

8.
Biol Reprod ; 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38647664

RESUMO

OBJECTIVE: The purpose of this study is to investigate the role of high mobility group protein B1 (HMGB1) in placental development and fetal growth. METHODS: We employed the Cre-loxP recombination system to establish a placenta-specific HMGB1 knockout mouse model. Breeding HMGB1flox/flox mice with Elf5-Cre mice facilitated the knockout, leveraging Elf5 expression in extra-embryonic ectoderm, ectoplacental cone, and trophoblast giant cells at 12.5 days of embryonic development. The primary goal of this model was to elucidate the molecular mechanism of HMGB1 in placental development, assessing parameters such as placental weight, fetal weight, and bone development. Additionally, we utilized lentiviral interference and overexpression of HMGB1 in human trophoblast cells to further investigate HMGB1's functional role. RESULTS: Our findings indicate that HMGB1flox/floxElf5cre/+ mouse display fetal growth restriction (FGR), characterized by decreased placental and fetal weight and impaired bone development. And the absence of HMGB1 inhibits autophagosome formation, impairs lysosomal degradation, and disrupts autophagic flux. Depletion of HMGB1 in human trophoblast cells also suppresses cell viability, proliferation, migration, and invasion by inhibiting the ERK signaling pathway. Overexpression of HMGB1 observed the opposite phenotypes. CONCLUSIONS: HMGB1 participates in the regulation of autophagy through the ERK signaling pathway and affects placental development.

9.
Comput Biol Med ; 173: 108292, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38513387

RESUMO

Lung cancer is one of the most common malignant tumors around the world, which has the highest mortality rate among all cancers. Traditional Chinese medicine (TCM) has attracted increased attention in the field of lung cancer treatment. However, the abundance of ingredients in Chinese medicines presents a challenge in identifying promising ingredient candidates and exploring their mechanisms for lung cancer treatment. In this work, two network-based algorithms were combined to calculate the network relationships between ingredient targets and lung cancer targets in the human interactome. Based on the enrichment analysis of the constructed disease module, key targets of lung cancer were identified. In addition, molecular docking and enrichment analysis of the overlapping targets between lung cancer and ingredients were performed to investigate the potential mechanisms of ingredient candidates against lung cancer. Ten potential ingredients against lung cancer were identified and they may have similar effect on the development of lung cancer. The results obtained from this study offered valuable insights and provided potential avenues for the development of novel drugs aimed at treating lung cancer.


Assuntos
Medicamentos de Ervas Chinesas , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Simulação de Acoplamento Molecular , Algoritmos , Tórax , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Medicina Tradicional Chinesa
10.
Chem Sci ; 15(12): 4564-4570, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38516093

RESUMO

Axially chiral diaryl ethers bearing two potential axes find unique applications in bioactive molecules and catalysis. However, only very few catalytic methods have been developed to construct structurally diverse diaryl ethers. We herein describe an NHC-catalyzed atroposelective esterification of prochiral dialdehydes, leading to the construction of enantioenriched axially chiral diaryl ethers. Mechanistic studies indicate that the matched kinetic resolutions play an essential role in the challenging chiral induction of flexible dual-axial chirality by removing minor enantiomers via over-functionalization. This protocol features mild conditions, excellent enantioselectivity, broad substrate scope, and applicability to late-stage functionalization, and provides a modular platform for the synthesis of axially chiral diaryl ethers and their derivatives.

11.
World J Gastroenterol ; 30(6): 565-578, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38463028

RESUMO

BACKGROUND: Esophageal squamous cell carcinoma (ESCC) is a deadly malignancy with limited treatment options. Deubiquitinases (DUBs) have been confirmed to play a crucial role in the development of malignant tumors. JOSD2 is a DUB involved in controlling protein deubiquitination and influencing critical cellular processes in cancer. AIM: To investigate the impact of JOSD2 on the progression of ESCC. METHODS: Bioinformatic analyses were employed to explore the expression, prognosis, and enriched pathways associated with JOSD2 in ESCC. Lentiviral transduction was utilized to manipulate JOSD2 expression in ESCC cell lines (KYSE30 and KYSE150). Functional assays, including cell proliferation, colony formation, drug sensitivity, migration, and invasion, were performed, revealing the impact of JOSD2 on ESCC cell lines. JOSD2's role in xenograft tumor growth and drug sensitivity in vivo was also assessed. The proteins that interacted with JOSD2 were identified using mass spectrometry. RESULTS: Preliminary research indicated that JOSD2 was highly expressed in ESCC tissues, which was associated with poor prognosis. Further analysis demonstrated that JOSD2 was upregulated in ESCC cell lines compared to normal esophageal cells. JOSD2 knockdown inhibited ESCC cell activity, including proliferation and colony-forming ability. Moreover, JOSD2 knockdown decreased the drug resistance and migration of ESCC cells, while JOSD2 overexpression enhanced these phenotypes. In vivo xenograft assays further confirmed that JOSD2 promoted tumor proliferation and drug resistance in ESCC. Mechanistically, JOSD2 appears to activate the MAPK/ERK and PI3K/AKT signaling pathways. Mass spectrometry was used to identify crucial substrate proteins that interact with JOSD2, which identified the four primary proteins that bind to JOSD2, namely USP47, IGKV2D-29, HSP90AB1, and PRMT5. CONCLUSION: JOSD2 plays a crucial role in enhancing the proliferation, migration, and drug resistance of ESCC, suggesting that JOSD2 is a potential therapeutic target in ESCC.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Humanos , Carcinoma de Células Escamosas do Esôfago/patologia , Neoplasias Esofágicas/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células , Enzimas Desubiquitinantes/genética , Regulação Neoplásica da Expressão Gênica , Proteína-Arginina N-Metiltransferases
12.
Gene ; 914: 148405, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38521110

RESUMO

The trophoblast epithelial-to-mesenchymal transition (EMT) is a procedure related to embryo implantation, spiral artery establishment and fetal-maternal communication, which is a key event for successful pregnancy. Inadequate EMT is one of the pathological mechanisms of recurrent miscarriage (RM). Whole-exome sequencing revealed that the mutation of bromodomain PHD-finger transcription factor (BPTF) was strongly associated with RM. In the present study, the effects of BPTF on EMT and the underlying mechanism were investigated. We found that the expression of BPTF in the villi of RM patients was significantly downregulated. Gene Ontology (GO) analysis revealed that BPTF participated in cell adhesion. The knockdown of BPTF prevented EMT and attenuated trophoblast invasion in vitro. BPTF activated Slug transcription by binding directly to the promoter region of the Slug gene. Interestingly, the protein levels of both Slug and BPTF were decreased in the villous cytotrophoblasts (VCTs) of RM villi. In conclusion, BPTF participates in the regulation of trophoblast EMT by activating Slug expression, suggesting that BPTF defects are an important factor in RM pathogenesis.


Assuntos
Antígenos Nucleares , Proteínas que Contêm Bromodomínio , Transição Epitelial-Mesenquimal , Proteínas do Tecido Nervoso , Fatores de Transcrição da Família Snail , Fatores de Transcrição , Trofoblastos , Trofoblastos/metabolismo , Humanos , Feminino , Fatores de Transcrição da Família Snail/metabolismo , Fatores de Transcrição da Família Snail/genética , Gravidez , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Aborto Habitual/genética , Aborto Habitual/metabolismo , Adesão Celular , Regiões Promotoras Genéticas , Adulto
13.
Small ; 20(25): e2311056, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38377262

RESUMO

The poor efficiency and low immunogenicity of photodynamic therapy (PDT), and the immunosuppressive tumor microenvironment (ITM) lead to tumor recurrence and metastasis. In this work, TCPP-TER-Zn@RSV nanosheets (TZR NSs) that co-assembled from the endoplasmic reticulum (ER)-targeting photosensitizer TCPP-TER-Zn nanosheets (TZ NSs for short) and the autophagy promoting and indoleamine-(2, 3)-dioxygenase (IDO) inhibitor-like resveratrol (RSV) are fabricated to enhance antitumor PDT. TZR NSs exhibit improved therapeutic efficiency and amplified immunogenic cancer cell death (ICD) by ER targeting PDT and ER autophagy promotion. TZR NSs reversed the ITM with an increase of CD8+ T cells and reduce of immunosuppressive Foxp3 regulatory T cells, which effectively burst antitumor immunity thus clearing residual tumor cells. The ER-targeting TZR NSs developed in this paper presents a simple but valuable reference for high-efficiency tumor photodynamic immunotherapy.


Assuntos
Autofagia , Retículo Endoplasmático , Imunoterapia , Fotoquimioterapia , Microambiente Tumoral , Microambiente Tumoral/efeitos dos fármacos , Fotoquimioterapia/métodos , Imunoterapia/métodos , Autofagia/efeitos dos fármacos , Retículo Endoplasmático/metabolismo , Animais , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/uso terapêutico , Nanoestruturas/química , Humanos , Linhagem Celular Tumoral , Camundongos
14.
J Agric Food Chem ; 72(8): 4023-4034, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38357881

RESUMO

In this study, an effective method for preparation of bioactive galloylated procyanidin B2-3'-O-gallate (B2-3'-G) was first developed by incomplete depolymerization of grape seed polymeric procyanidins (PPCs) using l-cysteine (Cys) in the presence of citric acid. The structure-activity relationship of B2-3'-G was further evaluated in vitro through establishing lipopolysaccharide (LPS)-induced inflammation in RAW264.7 cells. The results suggested that the better protective effects of B2-3'-G against inflammation were attributed to its polymerization degree and the introduction of the galloyl group, compared to its four corresponding structural units. In vivo experiments demonstrated that the B2-3'-G prototype was distributed in plasma, small intestine, liver, lung, and brain. Remarkably, B2-3'-G was able to penetrate the blood-brain barrier and appeared to play an important role in improving brain health. Furthermore, a total of 18 metabolites were identified in tissues. Potential metabolic pathways, including reduction, methylation, hydration, desaturation, glucuronide conjugation, and sulfation, were suggested.


Assuntos
Biflavonoides , Catequina , Proantocianidinas , Humanos , Proantocianidinas/farmacologia , Proantocianidinas/química , Cisteína , Distribuição Tecidual , Biflavonoides/farmacologia , Biflavonoides/química , Catequina/química , Inflamação , Anti-Inflamatórios/farmacologia
15.
Nat Commun ; 15(1): 1182, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38383554

RESUMO

High reproductive compatibility between crops and their wild relatives can provide benefits for crop breeding but also poses risks for agricultural weed evolution. Weedy rice is a feral relative of rice that infests paddies and causes severe crop losses worldwide. In regions of tropical Asia where the wild progenitor of rice occurs, weedy rice could be influenced by hybridization with the wild species. Genomic analysis of this phenomenon has been very limited. Here we use whole genome sequence analyses of 217 wild, weedy and cultivated rice samples to show that wild rice hybridization has contributed substantially to the evolution of Southeast Asian weedy rice, with some strains acquiring weed-adaptive traits through introgression from the wild progenitor. Our study highlights how adaptive introgression from wild species can contribute to agricultural weed evolution, and it provides a case study of parallel evolution of weediness in independently-evolved strains of a weedy crop relative.


Assuntos
Variação Genética , Oryza , Evolução Molecular , Porosidade , Melhoramento Vegetal , Sudeste Asiático , Plantas Daninhas/genética , Oryza/genética
16.
Toxics ; 12(2)2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38393209

RESUMO

Although the ecological risk of emerging contaminants is currently a research hotspot in China and abroad, few studies have investigated the ecological risk of pesticide pollutants in Chinese coastal sediments. In this study, nine pesticide pollutants included in the "List of New Key Pollutants for Control (2023 Edition)" issued by the Chinese government were used as the research objects, and the environmental exposure of pesticide pollutants in China's coastal sediments was analyzed. The baseline sediment quality criteria were deduced using the balanced distribution method, and a multi-level ecological risk assessment of pesticides in sediment was performed. The results showed that the nine pesticide pollutants were widespread in Chinese coastal sediments, with concentrations ranging from 0.01 ng·g-1 to 330 ng·g-1. The risk quotient assessment showed that endosulfan and DDT posed medium environmental risks to the Chinese coastal sediment environment, and PCBs posed medium risks in some bays of the East China Sea. The semi-probabilistic, optimized semi-probability evaluation and joint probability curve (JPC) assessments all show that endosulfan and DDT pose a certain degree of risk to the environment.

17.
Anal Chem ; 96(6): 2481-2490, 2024 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-38293931

RESUMO

Activatable near-infrared (NIR) fluorescent probes possess advantages of high selectivity, sensitivity, and deep imaging depth, holding great potential in the early diagnosis and prognosis assessment of tumors. However, small-molecule fluorescent probes are largely limited due to the rapid diffusion and metabolic clearance of activated fluorophores in vivo. Herein, we propose an efficient and reproducible novel strategy to construct activatable fluorescent nanoprobes through bioorthogonal reactions and the strong gold-sulfur (Au-S) interactions to achieve an enhanced permeability and retention (EPR) effect, thereby achieving prolonged and high-contrast tumor imaging in vivo. To demonstrate the merits of this strategy, we prepared an activatable nanoprobe, hCy-ALP@AuNP, for imaging alkaline phosphatase (ALP) activity in vivo, whose nanoscale properties facilitate accumulation and long-term retention in tumor lesions. Tumor-overexpressed ALP significantly increased the fluorescence signal of hCy-ALP@AuNP in the NIR region. More importantly, compared with the small-molecule probe hCy-ALP-N3, the nanoprobe hCy-ALP@AuNP significantly improved the distribution and retention time in the tumor, thus improving the imaging window and accuracy. Therefore, this nanoprobe platform has great potential in the efficient construction of biomarker-responsive fluorescent nanoprobes to realize precise tumor diagnosis in vivo.


Assuntos
Corantes Fluorescentes , Neoplasias , Humanos , Corantes Fluorescentes/metabolismo , Neoplasias/diagnóstico por imagem , Imagem Óptica/métodos
18.
Sci Total Environ ; 912: 168839, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38036138

RESUMO

As industrial and societal advancements progress, an increasing number of environmental pollutants linked to human existence have been substantiated to elicit neurotoxicity and developmental neural toxicity. For research in this field, human-derived neural cell lines have become excellent in vitro models. This study examines the utilization of immortalized cell lines, specifically the SH-SY5Y human neuroblastoma cell line, and neural cells derived from human pluripotent stem cells, in the investigation of neurotoxicity and developmental neural toxicity caused by environmental pollutants. The study also explores the culturing techniques employed for these cell lines and provides an overview of the standardized assays used to assess various biological endpoints. The environmental pollutants involved include a variety of organic compounds, heavy metals, and microplastics. The utilization of cell lines derived from human sources holds significant significance in elucidating the neurotoxic effects of environmental pollutants and the underlying mechanisms. Finally, we propose the possibility of improving the in vitro model of the human nervous system and the toxicity detection methods.


Assuntos
Poluentes Ambientais , Neuroblastoma , Humanos , Poluentes Ambientais/toxicidade , Plásticos , Linhagem Celular , Neurônios/fisiologia , Linhagem Celular Tumoral
19.
Int J Biol Macromol ; 257(Pt 2): 128802, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38101670

RESUMO

Heat shock proteins (HSPs) are crucial cellular stress proteins that react to environmental cues, ensuring the preservation of cellular functions. They also play pivotal roles in orchestrating the immune response and participating in processes associated with cancer. Consequently, the classification of HSPs holds immense significance in enhancing our understanding of their biological functions and in various diseases. However, the use of computational methods for identifying and classifying HSPs still faces challenges related to accuracy and interpretability. In this study, we introduced MulCNN-HSP, a novel deep learning model based on multi-scale convolutional neural networks, for identifying and classifying of HSPs. Comparative results showed that MulCNN-HSP outperforms or matches existing models in the identification and classification of HSPs. Furthermore, MulCNN-HSP can extract and analyze essential features for the prediction task, enhancing its interpretability. To facilitate its accessibility, we have made MulCNN-HSP available at http://cbcb.cdutcm.edu.cn/HSP/. We hope that MulCNN-HSP will contribute to advancing the study of HSPs and their roles in various biological processes and diseases.


Assuntos
Aprendizado Profundo , Neoplasias , Humanos , Proteínas de Choque Térmico/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo
20.
Mol Ther Nucleic Acids ; 34: 102075, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38074898

RESUMO

Billions of people worldwide have experienced irreversible kidney injuries, which is mainly attributed to the complexity of drug-induced nephrotoxicity. Consequently, there is an urgent need for uncovering the mechanisms of nephrotoxicity caused by compounds. In the present study, a network-based methodology was applied to explore the mechanisms of nephrotoxicity induced by specific compounds. Initially, a total of 42 nephrotoxic compounds and 60 kinds of syndromes associated with nephrotoxicity were collected from public resources. Afterward, network localization and separation algorithms were used to map the targets of compounds and diseases into the human interactome. By doing so, 199 statistically significant nephrotoxic networks displaying the interaction between compound targets and disease genes were obtained, which played pivotal roles in compounds-induced nephrotoxicity. Subsequently, enrichment analysis pinpointed core Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathways that highlight commonalities in nephrotoxicity induced by nephrotoxic compounds. It was found that nephrotoxic compounds primarily induce nephrotoxicity by mediating the advanced glycosylation end products-receptor for advanced glycosylation end products signaling pathway in diabetic complications, human cytomegalovirus infection, lipid and atherosclerosis, Kaposi sarcoma-associated herpesvirus infection, apoptosis, and the phosphatidylinositol 3-kinase-Akt pathways. These results provide valuable insights for preventing drug-induced nephrotoxicity. Furthermore, the approaches we used are also helpful in conducting research on other kinds of toxicities.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...