Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 114
Filtrar
1.
Int J Biol Macromol ; 272(Pt 1): 132805, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38825261

RESUMO

The composites composed of hyaluronic acid (HA) and silk fibroin (SF) exhibit great potential in diverse biomedical applications. However, the utilization of commercial crosslinkers such as 1,4-butanediol diglycidyl ether (BDDE) for crosslinking HA typically necessitates harsh conditions involving strong alkaline, which greatly limits its potential applications. In this study, a mild modified approach was developed to fabricate HA/SF blend sponges crosslinked by BDDE without alkaline conditions. The blend solutions were cryo-concentrated to induce crosslinking reactions. The mechanism of freezing crosslinking was elucidated by investigating the effects of ice crystal growth and HA molecular weight on the degree of crosslinking. The results revealed that HA achieved efficient crosslinking when its molecular weight exceeds 1000 kDa and freezing temperatures ranged from -40 °C to -20 °C. After introducing SF, multiple crosslinks were formed between SF and HA chains, producing water-stable porous sponges. The SEM results demonstrated that the introduction of SF effectively enhanced the interconnectivity between macropores through creating subordinate holes onto the pores wall. Raising the SF content significantly enhanced compression strength, resistance to enzymatic degradation and cell viability of blend sponges. This study provides a novel strategy for designing bioactive HA/SF blend sponges as substitutes for tissue repair and wound dressing.


Assuntos
Reagentes de Ligações Cruzadas , Fibroínas , Ácido Hialurônico , Fibroínas/química , Ácido Hialurônico/química , Animais , Reagentes de Ligações Cruzadas/química , Porosidade , Materiais Biocompatíveis/química , Camundongos , Peso Molecular , Sobrevivência Celular/efeitos dos fármacos
2.
Int J Biol Macromol ; 262(Pt 2): 130074, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38342259

RESUMO

Poor systemic administration capability, a natural tendency to target CAR-positive cells, nonspecific shedding to normal organs, and poor viral persistence in tumor tissues are major hindrances to the therapeutic benefit of adenovirus (Ad) gene vectors in the clinical setting. Antheraea pernyi silk fibroin (ASF) grafted with targeted peptides was used to coat ING4-IL-24 dual-gene coexpressing adenovirus for targeted gene therapy of lung carcinoma. The dual-gene vector with a diameter of 390 nm could target and infect H460 lung tumor cells, internalize into cells, express the ING4 and IL-24 genes at a high level, effectively inhibit the proliferation of lung tumor cells, and induce their apoptosis. The in vivo treatment of H460 human lung carcinoma xenograft tumors showed that the dual-gene coexpressing vector suppressed the proliferation of lung tumor cells by downregulating the expression of Ki67 and Bcl-2, promoted apoptosis by upregulating the expression of C Caspase-3 and Bax, and blocked tumor angiogenesis by downregulating the expression of VEGF and CD31, thus exerting a multichannel tumor inhibition effect. Surface modification of Ad with targeted cationic silk fibroin is an effective way to solve the natural tendencies and in vivo instability of adenovirus vectors, and such vectors have potential for clinical application.


Assuntos
Carcinoma , Fibroínas , Neoplasias Pulmonares , Mariposas , Animais , Humanos , Fibroínas/genética , Pulmão , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/terapia , Seda
3.
Pharmaceutics ; 15(12)2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38140096

RESUMO

Polo-like protein kinase 1 (PLK1) plays a key role in lung cancer cell mitosis. The knockout of PLK1 gene by the CRISPR-Cas9 system can effectively inhibit the proliferation of tumor cells, but there is no suitable vector for in vivo delivery. In this study, CRISPR-Cas9 gene knockout plasmids encoding sgRNA, Cas9 and green fluorescent protein were constructed. Then, the plasmids were packaged with liposome (Lip) and cholesterol-modified Antheraea pernyi silk fibroin (CASF) to obtain the CASF/Lip/pDNA ternary complex. The CASF/Lip/pDNA complex was transfected into lung cancer cells A549 to investigate the transfection efficiency, the PLK1 gene knockout effect and the inhibitory effect on lung cancer cells. The results showed that the transfection efficiency of the CASF/Lip/pDNA complex was significantly higher than that of the Lip/pDNA binary complex, and the expression of PLK1 in cells transfected with CASF/Lip/pDNA complexes was significantly lower than that in cells transfected with Lip/pDNA complexes. The CASF/Lip/pDNA complex significantly increased the apoptosis rate and decreased the proliferation activity of lung cancer cells compared with Lip/pDNA complexes. The cytotoxicity of the complexes was evaluated by coculture with the human bronchial epithelial cells BEAS2B. The results showed that CASF/Lip/pDNA complexes exhibited lower cytotoxicity than Lip/pDNA complexes. The fibroin-modified liposome/PLK1 gene knockout system not only effectively inhibited the growth of lung cancer cells but also showed no obvious toxicity to normal cells, showing potential for clinical application in lung cancer therapy.

4.
Front Chem ; 11: 1276691, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38025063

RESUMO

Introduction: Multi-point steam injection technology is a new completion method for heavy oil horizontal wells to solve the uneven distribution of the intake profile in the horizontal section. It is equipped with the flow control device to achieve the effect of balanced steam injection. Methods: The steady-state experiment method was adopted; Considering the variable mass complex flow of the steam-liquid two-phase flow in the downhole flow device, the pressure loss of downhole tools through uniform steam injection with different steam-liquid compositions was tested, the influencing factors of the pressure drop were analyzed, and a more reliable pressure drop calculation method was established. Results: The overflow pressure drop can be adjusted by changing the aperture, steam dryness, and fluid flow of the downhole outflow control device (OCD). Discussion: By comparing the experimental and theoretical results, the calculation method of the overflow resistance of single-phase and steam-liquid two-phase fluids in OCD is given, and the error is within the usable range.

5.
Biosens Bioelectron ; 242: 115711, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37797533

RESUMO

The development of a rapid and reliable polymerase chain reaction (PCR) method for point-of-care (POC) diagnosis is crucial for the timely identification of pathogens. Microfluidics, which involves the manipulation of small volumes of fluidic samples, has been shown to be an ideal approach for POC analysis. Among the various microfluidic platforms available, digital microfluidics (DMF) offers high degree of configurability in manipulating µL/nL-scale liquid and achieving automation. However, the successful implementation of ultrafast PCR on DMF platforms presents challenges due to inherent system instability. In this study, we developed a robust and ultrafast PCR in 3.7-5 min with a detection sensitivity comparable to conventional PCR. Specifically, the implementation of the pincer heating scheme homogenises the temperature within a drop. The utilization of a µm-scale porous hydrophobic membrane suppresses the formation of bubbles under high temperatures. The design of a groove around the high-temperature zone effectively mitigates the temperature interference. The integration of a soluble sensor into the droplets provides an accurate and instant in-drop temperature sensing. We envision that the fast, robust, sensitive, and automatic DMF system will empower the POC testing for infectious diseases.


Assuntos
Técnicas Biossensoriais , Doenças Transmissíveis , Humanos , Microfluídica/métodos , Reação em Cadeia da Polimerase , Sistemas Automatizados de Assistência Junto ao Leito
6.
Pharm Res ; 40(12): 2983-3000, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37816929

RESUMO

OBJECTIVES: Miltefosine is the first and only oral medication to be successfully utilized as an antileishmanial agent. However, the drug is associated with differences in exposure patterns and cure rates among different population groups e.g. ethnicity and age (i.e., children v adults) in clinical trials. In this work, mechanistic population physiologically-based pharmacokinetic (PBPK) models have been developed to study the dose-exposure-response relationship of miltefosine in in silico clinical trials and evaluate the differences in population groups, particularly children and adults. METHODS: The Simcyp population pharmacokinetics platform was employed to predict miltefosine exposure in plasma and peripheral blood mononuclear cells (PBMCs) in a virtual population under different dosing regimens. The cure rate of a simulation was based on the percentage of number of the individual virtual subjects with AUCd0-28 > 535 µg⋅day/mL in the virtual population. RESULTS: It is shown that both adult and paediatric PBPK models of miltefosine can be developed to predict the PK data of the clinical trials accurately. There was no significant difference in the predicted dose-exposure-response of the miltefosine treatment for different simulated ethnicities under the same dose regime and the dose-selection strategies determined the clinical outcome of the miltefosine treatment. A lower cure rate of the miltefosine treatment in paediatrics was predicted because a lower exposure of miltefosine was simulated in virtual paediatric in comparison with adult virtual populations when they received the same dose of the treatment. CONCLUSIONS: The mechanistic PBPK model suggested that the higher fraction of unbound miltefosine in plasma was responsible for a higher probability of failure in paediatrics because of the difference in the distribution of plasma proteins between adults and paediatrics. The developed PBPK models could be used to determine an optimal miltefosine dose regime in future clinical trials.


Assuntos
Antiprotozoários , Leucócitos Mononucleares , Adulto , Humanos , Criança , Fosforilcolina , Simulação por Computador , Modelos Biológicos
7.
ACS Omega ; 8(35): 31857-31869, 2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37692221

RESUMO

Hydraulic fracturing is the main stimulation method in the development of oil and gas fields. It is helpful to predict the fracture support effect during fracturing by calculating the settling velocity of particles in the fracturing fluid. Experimental research shows that fibers mixed into the fracturing fluid can improve the performance of suspended sand. In this study, fiber was considered a solvent in the fracturing fluid, and the constitutive model of the fiber-containing fracturing fluid was modified according to the fluid rheology. From the analysis of the mechanical behavior in the fiber-containing fluid, the settling velocity of particles slowed down because of some reasons. First, the viscosity of the fiber-containing fracturing fluid increased significantly. The other mechanism is the resistance mechanism of the fiber acting on the particle. The apparent viscosity was fitted based on the rheological model and the measurements. Then, the drag coefficient model of the settling particles was built according to the rheological data of the fibrous fluid. A semi-empirical model was developed to predict the terminal settling velocity through research on dynamics. By characteristic analysis of the results, we found that the fiber on the settling velocity is closely related to the concentration of the base fluid. This prediction model is suitable for the base fluid and fiber-containing fracturing fluid, and the average relative difference between the prediction model and measurements was acceptable.

8.
Polymers (Basel) ; 15(16)2023 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-37631440

RESUMO

Removing sericin from the periphery of silk without damage to silk fibroin (SF) to obtain high-molecular-weight SF is a major challenge in the field of SF-based biomaterials. In this study, four neutral proteases, subtilisin, trypsin, bromelain and papain, were used to degum silk, and the degumming efficiency of the proteases and their influence on the molecular weight (MW) of regenerated silk fibroin were studied. The results indicated that all four neutral proteases could remove sericin from silk almost completely, and they caused less damage to SF fibers than Na2CO3 degumming did. The degumming efficiency of trypsin and papain was strong, but they caused relatively high damage to SF, whereas bromelain caused the least damage. The results of sodium dodecyl sulfate-polyacrylamide gel electrophoresis, gel permeation chromatography and shear viscosity showed that the MWs of regenerated SF derived from neutral protease degumming were significantly higher than that of SF derived from Na2CO3 degumming. The MW of regenerated SF derived from bromelain degumming was the highest, while the MWs of regenerated SF derived from papain and trypsin degumming were relatively low. This study provides an efficient and environmentally friendly biological degumming method for obtaining high-molecular-weight silk fibroin.

9.
Biopolymers ; 114(7): e23554, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37232459

RESUMO

The regulation of the biodegradation rate of 3D-regenerated silk fibroin scaffolds and the avoidance of premature collapse are important concerns for their effective applications in tissue engineering. In this study, bromelain, which is specific to sericin, was used to remove sericin from silk, and high molecular weight silk fibroin was obtained after the fibroin fibers were dissolved. Afterwards, a 3D scaffold was prepared via freeze-drying. The Sodium dodecyl sulfate-polyacrylamide gel electrophoresis results showed that the average molecular weight of the regenerated silk fibroin prepared by using the bromelain-degumming method was approximately 142.2 kDa, which was significantly higher than that of the control groups prepared by using the urea- and Na2 CO3 -degumming methods. The results of enzyme degradation in vitro showed that the biodegradation rate and internal three-dimensional structure collapse of the bromelain-degumming fibroin scaffolds were significantly slower than those of the two control scaffolds. The proliferation activity of human umbilical vein vascular endothelial cells inoculated in bromelain-degumming fibroin scaffolds was significantly higher than that of the control scaffolds. This study provides a novel preparation method for 3D-regenerated silk fibroin scaffolds that can effectively resist biodegradation, continuously guide cell growth, have good biocompatibility, and have the potential to be used for the regeneration of various connective tissues.


Assuntos
Fibroínas , Sericinas , Humanos , Fibroínas/química , Alicerces Teciduais/química , Bromelaínas , Materiais Biocompatíveis/química , Sericinas/química , Peso Molecular , Células Endoteliais/metabolismo , Engenharia Tecidual/métodos , Seda/química , Proliferação de Células
10.
Pharm Res ; 40(8): 2051-2069, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37188904

RESUMO

OBJECTIVES: Polymeric excipients play an important role in a cocrystal formulation to act as precipitation inhibitors to maximize the potential. Otherwise, a stable form of the parent drug will be recrystallized on the dissolving cocrystal surface and/or in the bulk solution during the cocrystal dissolution process, negating the solubility advantage. The objectives of this work were to investigate the potential of using combined polymers to maximise the dissolution performance of surface precipitation pharmaceutical cocrystals. METHODS: The dissolution performance of a highly soluble flufenamic acid and nicotinamide (FFA-NIC) cocrystal has been systematically studied with predissolved or powder mixed with a single polymer, including a surface precipitation inhibitor [i.e., copolymer of vinylpyrrolidone (60%) /vinyl acetate (40%) (PVP-VA)] and two bulk precipitation inhibitors [i.e., polyethylene glycol (PEG) and Soluplus (SLP)], or binary polymers combinations. RESULTS: A single polymer of PVP-VA prevented the FFA surface precipitation for an enhanced dissolution performance of FFA-NIC cocrystal. Unfortunately, it cannot sustain the supersaturated FFA concentration in the bulk solution. A combination of two polymers of PVP-VA and SLP has shown a synergistic inhibition effect to enhance the dissolution advantage of FFA-NIC cocrystal. CONCLUSIONS: The dissolution of a cocrystal with surface precipitation of the parent drug can be described as: i) the cocrystal surface contacting the dissolution medium; ii) the cocrystal surface dissolving; iii) the parent drug precipitation on the dissolving surface; and iv) the parent drug particles redissolving. A combination of two types of polymers can be used to maximise the cocrystal performance in solution.


Assuntos
Polímeros , Polivinil , Solubilidade , Polímeros/química , Preparações Farmacêuticas
11.
Colloids Surf B Biointerfaces ; 224: 113210, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36841206

RESUMO

Reducing the cytotoxicity of cationic polymers is the major issue to their use as a gene delivery carrier. In this study, plasmids containing encoding vascular endothelial cell growth factor 165 and angiopoietin-1 were packaged with the conjugates of cationic fibroin (CSF) and polyethylenimine (PEI), instead of packaging pDNA with PEI alone, to prepare nanocomplexes (CSF+PEI)/pDNA. The complexes were loaded into a silk fibroin scaffold to enhance its function to induce microvascular network generation and dermal tissue regeneration. The results of transfecting EA.hy926 cells with the complexes in vitro showed that (CSF+PEI)/pDNA had a stronger transfection ability than PEI/pDNA. Importantly, compared with PEI as the gene carrier alone, the cell viability was significantly increased and the cytotoxicity was effectively reduced after the conjugate of CSF and PEI was used as the gene carrier. The results of angiogenesis in chick embryo chorioallantoic membranes showed that compared with scaffolds loaded with PEI/pDNA, the neovascularization ratio in scaffolds loaded with (CSF+PEI)/pDNA was significantly increased. In vivo experimental results of scaffolds implantation for full-thickness skin defects in SD rats showed that, compared with loading PEI/pDNA complex, loading (CSF+PEI)/pDNA complex in the scaffold more effectively promoted the formation of vascular network in the scaffold and accelerated the regeneration of dermal tissue. The gene delivery system established in this study has application potential not only in the regeneration of vascular-containing tissues, but also in tumor gene therapy.


Assuntos
Fibroínas , Polietilenoimina , Ratos , Embrião de Galinha , Animais , Polietilenoimina/farmacologia , Fibroínas/farmacologia , DNA/genética , Angiopoietina-1/genética , Ratos Sprague-Dawley , Plasmídeos/genética , Transfecção , Técnicas de Transferência de Genes
12.
Soft Matter ; 19(5): 1008-1016, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36647597

RESUMO

A soft magnetic elastomer, called a magnetorheological elastomer (MRE), based on a polyacrylamide (PAM) modified carbonyl iron particle (P-CIP) composite and a water-soluble PAM matrix was designed and prepared by the chemical polymerization and crosslinking method. P-CIPs were synthesized by the polymerization of an acrylamide monomer on the CIP surface to improve the oxidation resistance of CIPs and the interaction between the particles and polymer matrix in the MRE. The results obtained from infrared spectroscopy, scanning electron microscopy (SEM) and thermogravimetric analysis (TGA) (in a nitrogen atmosphere) show that the coating effect of the polymer on the particle surface is very good. TGA (in an air atmosphere) curves indicate that the P-CIPs show strong oxidation resistance. Meanwhile, the test results obtained for the magnetic properties show that the MRE with P-CIPs has a saturation magnetization (94.7 emu g-1), a relative magnetorheological effect (687.5%), and a Payne effect factor (92%) under the action of a strong magnetic field (1 T). It was also clearly found that these properties are enhanced with increasing magnetic field intensity. Furthermore, the chain effect of magnetic particles under a magnetic field, the strong particle-matrix interaction and its breakdown process with increasing shear strain were discussed in this work.

13.
Polymers (Basel) ; 15(23)2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38231982

RESUMO

The development of a wound dressing with both antibacterial and healing-guiding functions is a major concern in the treatment of open and infected wounds. In this study, poly(hexamethylene biguanide) hydrochloride (PHMB) was loaded into a 3D silk fibroin (SF) scaffold based on electrostatic interactions between PHMB and SF, and PHMB/SF hybrid scaffolds were prepared via freeze-drying. The effects of the PHMB/SF ratio on the antibacterial activity and cytocompatibility of the hybrid scaffold were investigated. The results of an agar disc diffusion test and a bacteriostasis rate examination showed that when the mass ratio of PHMB/SF was greater than 1/100, the scaffold exhibited obvious antibacterial activity against E. coli and S. aureus. L-929 cells were encapsulated in the PHMB/SF scaffolds and cultured in vitro. SEM, laser scanning confocal microscopy, and CCK-8 assay results demonstrated that hybrid scaffolds with a PHMB/SF ratio of less than 2/100 significantly promoted cell adhesion, spreading, and proliferation. In conclusion, a hybrid scaffold with a PHMB/SF ratio of approximately 2/100 not only effectively inhibited bacterial reproduction but also showed good cytocompatibility and is expected to be usable as a functional antibacterial dressing for wound repair.

14.
Cryst Growth Des ; 22(10): 6262-6266, 2022 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-36217416

RESUMO

Miltefosine is a repurposed anticancer drug and currently the only orally administered drug approved to treat the neglected tropical disease leishmaniasis. Miltefosine is hygroscopic and must be stored at subzero temperatures. In this work, we report the X-ray structures of miltefosine monohydrate and methanol solvate, along with 12- and 14-carbon chain analogue hydrates and a solvate. The three hydrates are all isostructural and are conformational isomorphs with Z' = 2. Water bridges the gap between phosphocholine head groups caused by the interdigitated bilayer structure. The two methanol solvates are also mutually isostructural with the head groups adopting a more extended conformation. Again, the solvent bridges the gap between head groups in the bilayer. No anhydrous form of miltefosine or its analogues were isolated, with dehydration resulting in significantly reduced crystallinity. This arises as a result of the integral role that hydrogen-bond donors (in the form of water or solvent molecules) play in the stability of the zwitterionic structures.

15.
Micromachines (Basel) ; 13(10)2022 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-36296002

RESUMO

The coronavirus disease 2019 pandemic has spread worldwide and caused more than six million deaths globally. Therefore, a timely and accurate diagnosis method is of pivotal importance for controlling the dissemination and expansions. Nucleic acid detection by the reverse transcription-polymerase chain reaction (RT-PCR) method generally requires centralized diagnosis laboratories and skilled operators, significantly restricting its use in rural areas and field settings. The digital microfluidic (DMF) technique provides a better option for simultaneous detections of multiple pathogens with fewer specimens and easy operation. In this study, we developed a novel digital microfluidic RT-qPCR platform for multiple detections of respiratory pathogens. This method can simultaneously detect eleven respiratory pathogens, namely, mycoplasma pneumoniae (MP), chlamydophila pneumoniae (CP), streptococcus pneumoniae (SP), human respiratory syncytial virus A (RSVA), human adenovirus (ADV), human coronavirus (HKU1), human coronavirus 229E (HCoV-229E), human metapneumovirus (HMPV), severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), influenza A virus (FLUA) and influenza B virus (FLUB). The diagnostic performance was evaluated using positive plasmids samples and clinical specimens compared with off-chip individual RT-PCR testing. The results showed that the limit of detections was around 12 to 150 copies per test. The true positive rate, true negative rate, positive predictive value, negative predictive value, and accuracy of DMF on-chip method were 93.33%, 100%, 100%, 99.56%, and 99.85%, respectively, as validated by the off-chip RT-qPCR counterpart. Collectively, this study reported a cost-effective, high sensitivity and specificity on-chip DMF RT-qPCR system for detecting multiple respiratory pathogens, which will greatly contribute to timely and effective clinical management of respiratory infections in medical resource-limited settings.

16.
Drug Des Devel Ther ; 16: 1515-1530, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35611358

RESUMO

Objective: Gastric cancer is one of the most lethal malignancies in the world. However, the current research on the diagnosis and treatment of nano-ultrasound contrast agents in the field of tumor is mostly focused on breast cancer, ovarian cancer, prostate cancer, liver cancer, etc. Due to the interference of gas in the stomach, there is no report on the treatment of gastric cancer. Herpes simplex virus thymidine kinase/ganciclovir (HSV-TK/GCV) therapy system is the most mature tumor suicide gene in cancer treatment. At the same time, in order to improve its safety and efficiency, we designed a gastric tumor targeted ultrasound-triggered phase-transition nano ultrasound contrast agent PFH/AGM-CBA/HSV-TK/Liposome (PAHL)-Affibody complex. Methods: In our study, guanidinylated SS-PAAs polymer poly(agmatine/N, N'-cystamine-bis-acrylamide) (AGM-CBA) was used as a nuclear localization vector of suicide gene to form a polyplex, perfluorohexane (PFH) was used as ultrasound contrast agent, liposomes were used to encapsulate perfluorohexane droplets and the polyplexes of AGM-CBA/HSV-TK, and affibody molecules were conjugated to the prepared PAHL in order to obtain a specific targeting affinity to human epidermal growth factor receptor type 2 (ErbB2) at gastric cancer cells. With the aid of ultrasound targeted microbubble destruction technology and the nuclear localization effect of AGM-CBA vector, the transfection efficiency of the suicide gene in gastric cancer cells was significantly increased, leading to significant apoptosis of gastric cancer cells. Results: It was shown that PAHL-Affibody complex was nearly spherical with an average diameter of 560 ± 28.9 nm, having higher and specific affinity to ErbB2 (+) gastric cells. In vitro experiments further confirmed that PAHL could target gastric cancer cells expressing ErbB2. In a contrast-enhanced ultrasound scanning study, the prepared ultrasound-triggered phase-change nano-ultrasound contrast agent, PAHL, showed improved ultrasound enhancement effects. With the application of the low-frequency ultrasound, the gene transfection efficiency of PAHL was significantly improved,  thereby inducing significant apoptosis in gastric cancer cells. Conclusion: This study constructs PFH/AGM-CBA/HSV-TK/Liposome-Affibody nano ultrasound contrast agent, which provides new ideas for the treatment strategy of ErbB2-positive gastric cancer and provides some preliminary experimental basis for its inhibitory effect.


Assuntos
Neoplasias Gástricas , Timidina Quinase , Antivirais/farmacologia , Meios de Contraste/farmacologia , Fluorocarbonos , Ganciclovir/farmacologia , Humanos , Lipossomos/farmacologia , Masculino , Receptor ErbB-2 , Simplexvirus/genética , Simplexvirus/metabolismo , Neoplasias Gástricas/diagnóstico por imagem , Neoplasias Gástricas/tratamento farmacológico , Timidina Quinase/genética , Timidina Quinase/metabolismo , Transfecção , Ultrassonografia
17.
Nanomaterials (Basel) ; 12(5)2022 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-35269301

RESUMO

Fe3O4@ZnO nanocomposites (NCs) were synthesized to improve the stability of the wormlike micelle (WLM) network structure of viscoelastic surfactant (VES) fracturing fluid and were characterized by Fourier transform infrared spectrometry (FT-IR), scanning electron microscopy (SEM), energy dispersive spectrometry (EDS), X-ray diffraction (XRD) and vibrating sample magnetometry (VSM). Then, an NC-enhanced viscoelastic surfactant solution as a fracturing fluid (NC-VES) was prepared, and its properties, including settlement stability, interactions between NCs and WLMs, proppant-transporting performance and gel-breaking properties, were systematically studied. More importantly, the influences of the NC concentration, shear rate, temperature and pH level on the stability of NC-VES were systematically investigated. The experimental results show that the NC-VES with a suitable content of NCs (0.1 wt.%) shows superior stability at 95 °C or at a high shear rate. Meanwhile, the NC-VES has an acceptable wide pH stability range of 6-9. In addition, the NC-VES possesses good sand-carrying performance and gel-breaking properties, while the NCs can be easily separated and recycled by applying a magnetic field. The temperature-resistant, stable and environmentally friendly fracturing fluid opens an opportunity for the future hydraulic fracturing of unconventional reservoirs.

18.
J Colloid Interface Sci ; 617: 500-510, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35290807

RESUMO

The development and exploration of high-entropy materials with tunable chemical compositions and unique structural characteristics, although challenging, have attracted increasingly greater attention over the past few years. Here, we report a universal and green method to prepare high-entropy layered (oxy)hydroxide (HE-LH) nanosheets under ambient conditions. This method is based on a self-reliant electrochemical process, utilizing only low-cost metal foils and electrolytes as reactant, with no need of involving extra alkali salts and/or organic reagents. Importantly, the composition of HE-LH nanosheets is widely tunable by simply adjusting the combination of metal foils. As a representative example, quinary layered (oxy)hydroxide (CoFeNiCrV-LH) nanosheets are rationally designed, which exhibit superior electrocatalytic activity and long-term durability towards the electrocatalytic oxygen evolution reaction, outperforming both CoFe layered double hydroxides and most previously reported transition-metal-based electrocatalysts. Comprehensive characterization and analysis reveal that the high-entropy effects play a significant role in forming the defect-rich, low-crystalline microstructures, along with large specific surface areas and optimized electronic configurations, thus enabling the boosted electrocatalytic performance. This electrochemical synthetic approach is generally applicable to the scalable synthesis of diverse HE-LH materials towards versatile promising applications.

19.
Lab Chip ; 22(3): 537-549, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34904611

RESUMO

Single-nucleotide polymorphism (SNP) plays a critical role in personalized medicine, forensics, pharmacogenetics, and disease diagnostics. Among different existing SNP genotyping techniques, melting curve analysis (MCA) becomes increasingly popular due to its high accuracy and straightforward procedures in extracting the melting temperature (Tm). Yet, its study on existing digital microfluidic (DMF) platforms has intrinsic limitations due to the temperature inhomogeneity within a thickened droplet during the on-chip rapid heating process. Although the utilization of an on-chip thermostat can regulate and monitor the dynamic melting process in real time, the limited Tm accuracy resulting from the insufficient system response time to accommodate the fast-melting evolution still poses a great challenge for precise MCA with high throughput. This work proposes a one-shot MCA on a DMF platform. The tailoring of a functional substrate with hierarchical micro/nano structure enables high-resolution patterning of pL-scale droplets. Specifically, the hydrothermal and photocatalysis treatment allows the functional substrate to exhibit a superwettability contrast of >170°, facilitating passive isolation of the pL-scale DNA sample into highly-resolved pL droplets above the 200 µm superhydrophilic patterns. This high-resolution MCA technique can successfully discriminate KRAS gene targets with single-nucleotide mutations in 3 seconds. The high accuracy and consistency in the acquired Tm when compared with off-chip results demonstrate its opportunities for near-patient diagnostics, precision medicines, genetic counseling, and prevention strategies on DMF platforms.


Assuntos
Microfluídica , Proteínas Proto-Oncogênicas p21(ras) , Técnicas de Genotipagem , Humanos , Microfluídica/métodos , Mutação , Reação em Cadeia da Polimerase/métodos , Proteínas Proto-Oncogênicas p21(ras)/genética
20.
Mol Pharm ; 18(12): 4272-4289, 2021 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-34748332

RESUMO

We report the evaluation and prediction of the pharmacokinetic (PK) performance of artemisinin (ART) cocrystal formulations, that is, 1:1 artemisinin/orcinol (ART-ORC) and 2:1 artemisinin/resorcinol (ART2-RES), using in vivo murine animal and physiologically based pharmacokinetic (PBPK) models. The efficacy of the ART cocrystal formulations along with the parent drug ART was tested in mice infected with Plasmodium berghei. When given at the same dose, the ART cocrystal formulation showed a significant reduction in parasitaemia at day 4 after infection compared to ART alone. PK parameters including Cmax (maximum plasma concentration), Tmax (time to Cmax), and AUC (area under the curve) were obtained by determining drug concentrations in the plasma using liquid chromatography-high-resolution mass spectrometry (LC-HRMS), showing enhanced ART levels after dosage with the cocrystal formulations. The dose-response tests revealed that a significantly lower dose of the ART cocrystals in the formulation was required to achieve a similar therapeutic effect as ART alone. A PBPK model was developed using a PBPK mouse simulator to accurately predict the in vivo behavior of the cocrystal formulations by combining in vitro dissolution profiles with the properties of the parent drug ART. The study illustrated that information from classical in vitro and in vivo experimental investigations of the parent drug of ART formulations can be coupled with PBPK modeling to predict the PK parameters of an ART cocrystal formulation in an efficient manner. Therefore, the proposed modeling strategy could be used to establish in vitro and in vivo correlations for different cocrystals intended to improve dissolution properties and to support clinical candidate selection, contributing to the assessment of cocrystal developability and formulation development.


Assuntos
Artemisininas/farmacocinética , Animais , Artemisininas/química , Disponibilidade Biológica , Cristalização , Relação Dose-Resposta a Droga , Liberação Controlada de Fármacos , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Modelos Biológicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...