Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 9(9): e19118, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37674825

RESUMO

Co-site interference is becoming prominent on some independent platforms (e.g., airplanes, satellites, space stations, and vessels). Although many digital multichannel cancellation algorithms have been investigated, the saturation problem of the receiver front-end caused by severe co-site interference should be addressed first with analog RF cancellation. Many studies are currently being conducted to develop an analog adaptive co-site interference cancellation system (AACICS). However, double LMS (Least Mean Square) loop in every channel raises the complexity and implemented difficulty. Above all, the interference cancellation in the scene of antenna swaying has received little attention, which severely limits the effective suppression of wideband interference. This study developed an analog 3-channel adaptive co-site wideband interference cancellation system (AACWICS-3ch) with one LMS loop in every channel and established the equivalent model of the AACWICS-3ch. The steady-state weight and interference cancellation ratio (ICR) were obtained by analyzing and solving the equivalent model. An in-depth analysis was conducted on the quantitative relationship correlations between the interference cancellation bandwidth, ICR, system gain, and antenna swing amplitude. Results reveal that AACWICS-3ch can greatly enhance the interference cancellation performance compared to 2-channel analog adaptive co-site interference cancellation system (AACICS-2ch). The maximum improved ICR is greater than 30 dB, and it overcomes the complexity of double LMS loop cancellation system with the increasing of channel. Finally, simulations and experiments validated the improvement of interference cancellation performance in AACWICS-3ch.

2.
Healthcare (Basel) ; 9(2)2021 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-33540855

RESUMO

Many healthcare institutions are interested in reducing costs and in maintaining a good quality of care. The operating room department is typically one of the most costly units in a hospital. Hospital managers are always interested in finding effective ways of using operating rooms to minimize operating costs. In this research, we study the operating room scheduling problem. We consider the use of a weekly surgery schedule with an open scheduling strategy that takes into account the availabilities of surgeons and operating rooms. The objective is to minimize the total operating cost while maximizing the utilization of the operating rooms but also minimizing overtime use. A revised mathematical model is proposed that can provide optimal solutions for a surgery size up to 110 surgical cases. Next, two modified heuristics, based on the earliest due date (EDD) and longest processing time (LPT) rules, are proposed to quickly find feasible solutions to the studied problem. Finally, an artificial bee colony (ABC) algorithm that incorporates the initial solutions, a recovery scheme, local search schemes, and an elitism strategy is proposed. The computational results show that, for a surgery size between 40 and 100 surgical cases, the ABC algorithm found optimal solutions to all of the tested problems. For surgery sizes larger than 110 surgical cases, the ABC algorithm performed significantly better than the two proposed heuristics. The computational results indicate that the proposed ABC is promising and capable of solving large problems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...