Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Cell Biol ; 39(1)2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30297459

RESUMO

A proper balance between the repair of DNA double-strand breaks (DSBs) by homologous recombination and nonhomologous end joining is critical for maintaining genome integrity and preventing tumorigenesis. This balance is regulated and fine-tuned by a variety of factors, including cell cycle and the chromatin environment. The histone acetyltransferase TIP60 was previously shown to suppress pathological end joining and promote homologous recombination. However, it is unknown how regulatory posttranslational modifications impact TIP60 acetyltransferase activity to influence the outcome of DSB responses. In this study, we report that phosphorylation of TIP60 on serines 90 and 86 is important for limiting the accumulation of the pro-end joining factor 53BP1 at DSBs in S and G2 cell cycle phases. Mutation of these sites disrupts histone acetylation changes in response to DNA damage, BRCA1 localization to DSBs, and poly(ADP-ribose) polymerase (PARP) inhibitor resistance. These findings reveal that phosphorylation directs TIP60-dependent acetylation to promote homologous recombination and maintain genome stability.


Assuntos
Reparo do DNA/genética , Lisina Acetiltransferase 5/genética , Transativadores/genética , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/genética , Animais , Cromatina/metabolismo , Quebras de DNA de Cadeia Dupla , Reparo do DNA por Junção de Extremidades/genética , Instabilidade Genômica/genética , Histonas/metabolismo , Recombinação Homóloga/genética , Camundongos Transgênicos , Fosforilação , Processamento de Proteína Pós-Traducional/genética
2.
J Cell Biol ; 217(9): 3255-3266, 2018 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-29945904

RESUMO

Primary cilia are polarized organelles that allow detection of extracellular signals such as Hedgehog (Hh). How the cytoskeleton supporting the cilium generates and maintains a structure that finely tunes cellular response remains unclear. Here, we find that regulation of actin polymerization controls primary cilia and Hh signaling. Disrupting actin polymerization, or knockdown of N-WASp/Arp3, increases ciliation frequency, axoneme length, and Hh signaling. Cdc42, a potent actin regulator, recruits both atypical protein pinase C iota/lambda (aPKC) and Missing-in-Metastasis (MIM) to the basal body to maintain actin polymerization and restrict axoneme length. Transcriptome analysis implicates the Src pathway as a major aPKC effector. aPKC promotes whereas MIM antagonizes Src activity to maintain proper levels of primary cilia, actin polymerization, and Hh signaling. Hh pathway activation requires Smoothened-, Gli-, and Gli1-specific activation by aPKC. Surprisingly, longer axonemes can amplify Hh signaling, except when aPKC is disrupted, reinforcing the importance of the Cdc42-aPKC-Gli axis in actin-dependent regulation of primary cilia signaling.


Assuntos
Actinas/metabolismo , Cílios/metabolismo , Proteínas Hedgehog/metabolismo , Proteína cdc42 de Ligação ao GTP/metabolismo , Células 3T3 , Proteína 3 Relacionada a Actina/genética , Animais , Axonema/fisiologia , Corpos Basais/metabolismo , Linhagem Celular , Ativação Enzimática/fisiologia , Regulação da Expressão Gênica/fisiologia , Camundongos , Proteínas dos Microfilamentos/metabolismo , Proteínas de Neoplasias/metabolismo , Polimerização , Proteína Quinase C/metabolismo , Transdução de Sinais/fisiologia , Proteína Neuronal da Síndrome de Wiskott-Aldrich/genética , Proteína GLI1 em Dedos de Zinco/metabolismo , Quinases da Família src/metabolismo
3.
Trends Cell Biol ; 24(11): 616-618, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25305135

RESUMO

DNA double-strand breaks are repaired by nonhomologous end-joining (NHEJ) and homologous recombination (HR). Disrupting the balance between these pathways results in toxic chromosomal rearrangements. Several recent studies are revealing that dynamic changes in chromatin conformation can regulate DNA repair pathway choice both spatially and temporally.


Assuntos
Proteína BRCA1/fisiologia , Histonas/fisiologia , Humanos
4.
Nature ; 494(7438): 484-8, 2013 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-23446420

RESUMO

Growth of basal cell carcinomas (BCCs) requires high levels of hedgehog (HH) signalling through the transcription factor GLI. Although inhibitors of membrane protein smoothened (SMO) effectively suppress HH signalling, early tumour resistance illustrates the need for additional downstream targets for therapy. Here we identify atypical protein kinase C ι/λ (aPKC-ι/λ) as a novel GLI regulator in mammals. aPKC-ι/λ and its polarity signalling partners co-localize at the centrosome and form a complex with missing-in-metastasis (MIM), a scaffolding protein that potentiates HH signalling. Genetic or pharmacological loss of aPKC-ι/λ function blocks HH signalling and proliferation of BCC cells. Prkci is a HH target gene that forms a positive feedback loop with GLI and exists at increased levels in BCCs. Genome-wide transcriptional profiling shows that aPKC-ι/λ and SMO control the expression of similar genes in tumour cells. aPKC-ι/λ functions downstream of SMO to phosphorylate and activate GLI1, resulting in maximal DNA binding and transcriptional activation. Activated aPKC-ι/λ is upregulated in SMO-inhibitor-resistant tumours and targeting aPKC-ι/λ suppresses signalling and growth of resistant BCC cell lines. These results demonstrate that aPKC-ι/λ is critical for HH-dependent processes and implicates aPKC-ι/λ as a new, tumour-selective therapeutic target for the treatment of SMO-inhibitor-resistant cancers.


Assuntos
Carcinoma Basocelular/metabolismo , Carcinoma Basocelular/patologia , Isoenzimas/metabolismo , Fatores de Transcrição Kruppel-Like/metabolismo , Proteína Quinase C/metabolismo , Fatores de Transcrição/metabolismo , Animais , Carcinoma Basocelular/tratamento farmacológico , Carcinoma Basocelular/enzimologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Centrossomo/metabolismo , Resistencia a Medicamentos Antineoplásicos , Retroalimentação Fisiológica , Proteínas Hedgehog/metabolismo , Humanos , Isoenzimas/antagonistas & inibidores , Isoenzimas/genética , Queratinócitos/metabolismo , Fatores de Transcrição Kruppel-Like/genética , Camundongos , Fosforilação , Proteína Quinase C/antagonistas & inibidores , Proteína Quinase C/genética , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais/efeitos dos fármacos , Receptor Smoothened , Proteína GLI1 em Dedos de Zinco
5.
Trends Biochem Sci ; 37(10): 418-24, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22836122

RESUMO

BRCA1 and BRCA2 are two major breast and ovarian cancer susceptibility genes. BRCA1 was the first discovered and has been a focus of research for these cancers. BRCA1 mediates tumor suppression in part through pleiotropic interactions with a network of DNA repair proteins on chromatin. BRCA1 mutations cause homologous recombination (HR)-mediated DNA repair deficiency, genomic instability, and DNA-damaging agent hypersensitivity. Although BRCA1 and BRCA2 have some shared functions in cancer predisposition and therapy response, there are also key differences indicating divergent roles for each protein. This review summarizes and highlights recent insights into the molecular events responsible for BRCA1 tumor suppression, emphasizing the DNA repair function of BRCA1 as a nexus between its roles in cancer development and therapy.


Assuntos
Proteína BRCA1/genética , Genoma , Neoplasias/genética , Animais , Proteína BRCA1/química , Proteína BRCA1/metabolismo , Dano ao DNA , Reparo do DNA , DNA de Neoplasias/genética , Humanos
6.
Dev Cell ; 19(2): 270-83, 2010 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-20708589

RESUMO

The primary cilium is critical for transducing Sonic hedgehog (Shh) signaling, but the mechanisms of its transient assembly are poorly understood. Previously we showed that the actin regulatory protein Missing-in-Metastasis (MIM) regulates Shh signaling, but the nature of MIM's role was unknown. Here we show that MIM is required at the basal body of mesenchymal cells for cilia maintenance, Shh responsiveness, and de novo hair follicle formation. MIM knockdown results in increased Src kinase activity and subsequent hyperphosphorylation of the actin regulator Cortactin. Importantly, inhibition of Src or depletion of Cortactin compensates for the cilia defect in MIM knockdown cells, whereas overexpression of Src or phospho-mimetic Cortactin is sufficient to inhibit ciliogenesis. Our results suggest that MIM promotes ciliogenesis by antagonizing Src-dependent phosphorylation of Cortactin and describe a mechanism linking regulation of the actin cytoskeleton with ciliogenesis and Shh signaling during tissue regeneration.


Assuntos
Cílios/fisiologia , Cortactina/metabolismo , Proteínas Hedgehog/metabolismo , Proteínas dos Microfilamentos/metabolismo , Proteínas de Neoplasias/metabolismo , Transdução de Sinais/fisiologia , Actinas/metabolismo , Animais , Células Cultivadas , Centrossomo/metabolismo , Cílios/ultraestrutura , Cortactina/genética , Ativação Enzimática , Técnicas de Silenciamento de Genes , Folículo Piloso/fisiologia , Proteínas Hedgehog/genética , Camundongos , Camundongos Knockout , Proteínas dos Microfilamentos/genética , Proteínas de Neoplasias/genética , Regeneração/fisiologia , Pele/citologia , Quinases da Família src/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...