Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; : e202406161, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38864758

RESUMO

Proton-coupled electron transfer (PCET) imparts an energetic advantage over solo electron transfer in activating inert substances. Natural PCET enzyme catalysis generally requires tripartite preorganization of proton relay, substrate-bound active center, and redox mediator, making the processes efficient and precluding side reactions. Inspired by this, a heterogeneous photocatalytic PCET system was established to achieve higher PCET driving forces by modifying proton relays into anthraquinone-based anionic coordination polymers. The proximally separated proton relays and photoredox-mediating anthraquinone moiety allowed pre-assembly of inert substrate between them, merging proton and electron into unsaturated bond by photoreductive PCET, which enhanced reaction kinetics than the counter catalyst without proton relay. This photocatalytic PCET method was applied to a broad-scoped reduction of aryl ketones, unsaturated carbonyls, and aromatic compounds. The distinctive regioselectivities for the reduction of isoquinoline derivatives were found to occur on the carbon-ring sides. PCET-hydrogenated radical intermediate of quinoline could be trapped by alkene for proton relay-assisted Minisci addition, forming the pharmaceutical aza-acenaphthene scaffold within one step. When using heteroatom(X)-H/C-H compounds as proton-electron donors, this protocol could activate these inert bonds through photooxidative PCET to afford radicals and trap them by electron-deficient unsaturated compounds, furnishing the direct X-H/C-H functionalization.

2.
ACS Omega ; 9(12): 14233-14240, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38559924

RESUMO

The radical difunctionalization of alkenes plays a vital role in pharmacy, but the conventional homogeneous catalytic systems are challenging in selectivity and sustainability to afford the target molecules. Herein, the famous readily available metal-organic framework (MOF), Cu3(BTC)2, has been applied to cyano-trifluoromethylation of alkenes as a high-performance and recyclable heterogeneous catalyst, which possesses copper(II) active sites residing in funnel-like cavities. Under mild conditions, styrene derivatives and various unactivated olefins could be smoothly transformed into the corresponding cyano-trifluoromethylation products. Moreover, the transformation brought about by the active copper center in confined environments achieved regio- and shape selectivity. To understand the enhanced selectivity, the activation manner of the MOF catalyst was studied with control catalytic experiments such as FT-IR and UV-vis absorption spectroscopy of substrate-incorporated Cu3(BTC)2, which elucidated that the catalyst underwent a radical transformation with the intermediates confined in the MOF cavity, and the confinement effect endowed the method with pronounced selectivities.

3.
Chem Commun (Camb) ; 59(85): 12755-12758, 2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37811602

RESUMO

A self-supported NiTeO3 perovskite is made by deploying an extended hydrothermal tellurization strategy with a restricted Te content, which was found to be exceptionally active towards the oxidation of water and methanol and the reduction of water in 1.0 M KOH where it delivered -10 mA cm-2 at just -1.54 V for a full cell featuring MOR‖HER.

4.
Chem Rec ; 23(11): e202300158, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37310416

RESUMO

Researching and utilizing radical intermediates in organic synthetic chemistry have innovated discoveries in methodology and theory. Reactions concerning free radical species opened new pathways beyond the frame of the two-electron mechanism while commonly characterized as rampant processes lacking selectivity. As a result, research in this field has always focused on the controllable generation of radical species and determining factors of selectivity. Metal-organic frameworks (MOFs) have emerged as compelling candidates as catalysts in radical chemistry. From a catalytic point of view, the porous nature of MOFs entails an inner phase for the reaction that could offer possibilities for the regulation of reactivity and selectivity. From a material science perspecti ve, MOFs are organic-inorganic hybrid materials that integrate functional units in organic compounds and complex forms in the tunable long-ranged periodic structure. In this account, we summarized our progress in the application of MOFs in radical chemistry in three parts: (1) The generation of radical species; (2) The weak interactions and site selectivity; (3) Regio- and stereo-selectivity. The unique role of MOFs play in these paradigms is demonstrated in a supramolecular narrative through the analyses of the multi-constituent collaboration within the MOF and the interactions between MOFs and the intermediates during the reactions.

5.
Angew Chem Int Ed Engl ; 62(20): e202219172, 2023 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-36799272

RESUMO

Redox logic materials offer new avenues to modulate intracellular pathologic redox environment area-specifically, but the unambiguity of redox logic states and their unidirectional and repetitive switchability are challenging to realize. By merging a bistable diisophthalic phenazine dye ligand with CuII salt, a multistable coordination polymer (CP) was constructed, of which the dye-Cu anisotropic junction achieved the diode-like unidirectional electron transfer and logic state ratchet for the first time. Radical cationic CP maintained OFF status with low toxicity in healthy tissues, but was reduced to the neutral SERVO state by the overexpressed glutathione (GSH) in hypoxic tumors. After photoirradiation, the stabilized charge-separated ON status promoted photo-Fenton reaction for reactive oxygen species (ROS) signal transduction, and simultaneously recovered the initial state for catalytic signal amplification of ROS, furnishing intratumor redox photomodulation for therapy.


Assuntos
Glutationa , Polímeros , Glutationa/metabolismo , Lógica , Oxirredução , Espécies Reativas de Oxigênio , Cobre/química
6.
ACS Nano ; 14(5): 5659-5667, 2020 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-32379413

RESUMO

Soft energy storage devices, such as supercapacitors, are an essential component for powering integrated soft microsystems. However, conventional supercapacitors are mainly manufactured using hard/brittle materials that easily crack and eventually delaminate from the current collector by mechanical deformation. Therefore, to realize all-soft supercapacitors, the electrodes should be soft, stretchable, and highly conductive without compromising the electrochemical performance. This paper presents all-soft supercapacitors for integrated soft microsystems based on gallium-indium liquid metal (eutectic gallium-indium alloy, EGaIn) electrodes with integrated functionalized carbon nanotubes (CNTs). Oxygen functional groups on the surface of the CNTs ensure strong adhesion between the functionalized CNTs and the thin native oxide layer on the surface of EGaIn, which enables delamination-free soft and stretchable electrodes even under mechanical deformation. The electrochemical performances of fabricated all-soft supercapacitors in a parallel-plate arrangement were investigated without and with applied mechanical deformation. The fabricated supercapacitors exhibit areal capacitances as high as 12.4 mF cm-2 and show nearly unchanged performance under 30% applied strain. They maintain >95% of their original capacitance after >4200 charging and discharging cycles with a periodic applied strain of 30%. Finally, fabricated supercapacitors have been successfully integrated with a commercial light-emitting diode to demonstrate an integrated soft microsystem.

7.
Nanotechnology ; 28(38): 38LT01, 2017 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-28723679

RESUMO

A new kind of carbon hybrid material with a unique structure and outstanding mechanical and functional properties is reported in this article. Nitrogen-doped carbon nanotube (CNT) arrays with inside located Ni particles are in situ grown on the surface of phenolic carbon modified graphene fibers during their conversion from graphene oxide fibers. The carbon hybrid fibers exhibit not only high tensile strength and elongation at the break, but also excellent flexibility since the CNT arrays cover all the surface of the highly strong graphene fiber. This well-constructed carbon material would be suitable for catalysts, polymer composites, hydrogen storage, oxygen reduction reaction etc.

8.
Nano Lett ; 16(10): 6511-6515, 2016 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-27685151

RESUMO

A new method to prepare graphene-based fibers with ultrahigh tensile strength, conductivity, and increased elongation is reported. It includes wet-spinning the mixture of GO aqueous dispersion with phenolic resin solution in a newly developed coagulation bath, followed by annealing. The introduced phenolic carbon increased densification of graphene fibers through reducing defects and increased interfacial interaction among graphene sheets by forming new C-C bonds, thus resulting in the increasing of stiffness, toughness, and conductivity simultaneously.

9.
Phys Chem Chem Phys ; 17(5): 3250-60, 2015 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-25521487

RESUMO

A novel and effective route for preparing phenol formaldehyde resin grafted reduced graphene oxide (rGO-g-PF) electrode materials with highly enhanced electrochemical properties is reported. In order to prepare rGO-g-PF, hydroxymethyl-terminated PF is initially grafted to graphene oxide (GO) via esterification reaction. Subsequently, the grafted GO is reduced by the carbonization process under an inert gas atmosphere. The covalent linkage, morphology, thermal stability and electrochemical properties of rGO-g-PF are systematically investigated by Fourier transform infrared spectroscopy, scanning electron microscopy, thermal gravimetric analysis, differential scanning calorimetry and a variety of electrochemical testing techniques. In the constructed architecture, the amorphous carbon shell can inhibit the co-intercalation of solvated lithium ion and avoid partial exfoliation of the graphene layers, thus effectively reducing the irreversible capacity and preserving the structural integrity. Meanwhile, the carbon coating layer leading to a decreased thickness of SEI film can improve the conductivity of electrode materials. As a result, the rGO-g-PF electrode exhibits impressive high cycling stability at various large current densities (376.5 mA h g(-1) at 50 mA g(-1) for 250 cycles, 337.8 mA h g(-1) at 200 mA g(-1) and 267.8 mA h g(-1) at 1 A g(-1) for 200 cycles), in combination with high rate capability.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...