Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Tissue Cell ; 89: 102465, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-39024865

RESUMO

Dry eye is a prevalent ophthalmic disease. Ocular surface inflammation in the hyperosmolar environment of the tear film is critical in dry eye progression. Quercetin has strong anti-inflammatory effects; however, its exact mechanism of action in dry eye is not fully understood. Therefore, this study investigated whether quercetin could inhibit the damage sustained to human corneal epithelial cells (HCECs) in a hyperosmolar environment through its anti-inflammatory effects. HCECs were cultured in a complete medium and were divided into four groups: normal, model, quercetin, and inhibitor. The proliferation of HCECs was detected by Ki67 staining; the expression levels of PTEN, p-PI3K and p-AKT were detected by Western blotting and immunofluorescence staining; the relative mRNA expression levels of PTEN, PI3K, AKT, IL-6 and TNF-ɑ were detected by quantitative real-time PCR; the relative expression levels of IL-6 and TNF-α were detected by enzyme-linked immunosorbent assay. In this study, the proliferation of HCECs in the model group was found to be significantly inhibited compared with that in the normal group; however, quercetin was effective in improving the proliferation of HCECs, decreasing the relative expression of p-PI3K, p-AKT, IL-6, TNF-ɑ as well as increasing PTEN. In conclusion, this study demonstrated that quercetin could promote the proliferation of HCECs and reduce the expression of inflammatory factors by inhibiting the PTEN/PI3K/AKT pathway in the hyperosmolarity-induced HCECs model.

2.
Cureus ; 15(1): e34208, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36843716

RESUMO

BACKGROUND: Congenital cataract is a common cause of blindness in childhood. About half of the cases have a genetic etiology, and more than 100 genes have been associated with congenital cataracts. This study reports the clinical and genetic findings of a two-generation Chinese family affected by congenital cataract. METHODS: Ophthalmologic examinations were performed for clinical evaluation of the cataract patients. Whole exome sequencing (WES) and Sanger sequencing were used to identify potentially relevant mutations. The online programsProtein Variation Effect Analyzer (PROVEAN) and Sorting Intolerant from Tolerant (SIFT) were employed to predict the impact of variation on protein function. RESULTS: Both the proband and her mother were blind because of bilateral nuclear cataracts, and the elder brother of the proband also manifested obvious bilateral cataracts. Sanger sequencing confirmed the mutations in the proband as well as in her mother. The elder brother simply carried the PAX6 c.221G>A variation. The WFS1 c.2070_2079del variation potentially generates a loss-of-function mutant. CONCLUSION: The novel PAX6mutation (c.221G>A) is associated with congenital cataract, and the WFS1 mutation (c.2070_2079del) may interactively aggravates this process. These findings may increase our understanding of the genetic etiology of congenital cataract.

3.
Front Genet ; 13: 1014188, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36246610

RESUMO

Background: Geleophysic dysplasia and Weill-Marchesani syndrome from the acromelic dysplasias group of genetic skeletal disorders share remarkable clinical and genetic overlap. Methods: Ophthalmological, physical, radiological examinations were conducted with a female patient in her early 30 s. Whole exome sequencing followed by Sanger sequencing validation was performed to identify the genetic cause. Results: The patient, born to consanguineous Chinese parents, presented with microspherophakia, lens subluxation, high myopia, short statue, small hands and feet, stiff joints, and thickened skin. A diagnosis of Weill-Marchesani syndrome was initially made for her. However, genetic testing reveals that the patient is homozygous for the c.1966G>A (p.Gly656Ser) variant in ADAMTSL2, and that the patient's healthy mother and daughter are heterozygous for the variant. As mutations in ADAMTSL2 are known to cause autosomal recessive geleophysic dysplasia, the patient is re-diagnosed with geleophysic dysplasia in terms of her genotype and phenotype. Conclusion: The present study describes the clinical phenotype of the homozygous ADAMTSL2 p. Gly656Ser variant, which increases our understanding of the genotype-phenotype correlation in acromelic dysplasias.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...