Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(6)2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38544217

RESUMO

Inertial measurement units (IMUs) are key components of various applications including navigation, robotics, aerospace, and automotive systems. IMU sensor characteristics have a significant impact on the accuracy and reliability of these applications. In particular, noise characteristics and bias stability are critical for proper filter settings to perform a combined GNSS/IMU solution. This paper presents an analysis based on the Allan deviation of different IMU sensors that correspond to different grades of micro-electromechanical systems (MEMS)-type IMUs in order to evaluate their accuracy and stability over time. The study covers three IMU sensors of different grades (ascending order): Rokubun Argonaut navigator sensor (InvenSense TDK MPU9250), Samsung Galaxy Note10 phone sensor (STMicroelectronics LSM6DSR), and NovAtel PwrPak7 sensor (Epson EG320N). The noise components of the sensors are computed using overlapped Allan deviation analysis on data collected over the course of a week in a static position. The focus of the analysis is to characterize the random walk noise and bias stability, which are the most critical for combined GNSS/IMU navigation and may differ or may not be listed in manufacturers' specifications. Noise characteristics are calculated for the studied sensors and examples of their use in loosely coupled GNSS/IMU processing are assessed. This work proposes a structured and reproducible approach for working with sensors for their use in navigation tasks in combination with GNSS, and can be used for sensors of different levels to supplement missing or incorrect sensor manufacturers' data.

2.
Sensors (Basel) ; 20(3)2020 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-31991729

RESUMO

The Multi-constellation Global Navigation Satellite System (Multi-GNSS) has become the standard implementation of high accuracy positioning and navigation applications. It is well known that the noise of code and phase measurements depend on GNSS constellation. Then, Helmert variance component estimation (HVCE) is usually used to adjust the contributions of different GNSS constellations by determining their individual variances of unit weight. However, HVCE requires a heavy computation load. In this study, the HVCE posterior weighting was employed to carry out a kinematic relative Multi-GNSS positioning experiment with six short-baselines from day of year (DoY) 171 to 200 in 2019. As a result, the HVCE posterior weighting strategy improved Multi-GNSS positioning accuracy by 20.5%, 15.7% and 13.2% in east-north-up (ENU) components, compared to an elevation-dependent (ED) priori weighting strategy. We observed that the weight proportion of both code and phase observations for each GNSS constellation were consistent during the entire 30 days, which indicates that the weight proportions of both code and phase observations are stable over a long period of time. It was also found that the quality of a phase observation is almost equivalent in each baseline and GNSS constellation, whereas that of a code observation is different. In order to reduce the time consumption of the HVCE method without sacrificing positioning accuracy, the stable variances of unit weights of both phase and code observations obtained over 30 days were averaged and then frozen as a priori information in the positioning experiment. The result demonstrated similar ENU improvements of 20.0%, 14.1% and 11.1% with respect to the ED method but saving 88% of the computation time of the HCVE strategy. Our study concludes with the observations that the frozen variances of unit weight (FVUW) could be applied to the positioning experiment for the next 30 days, that is, from DoY 201 to 230 in 2019, improving the positioning ENU accuracy of the ED method by 18.1%, 13.2% and 10.6%, indicating the effectiveness of the FVUW.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...