Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38603468

RESUMO

Taking advantage of the well-defined geometry of metal centers and highly directional metal-ligand coordination bonds, metal-organic frameworks (MOFs) have emerged as promising candidates for nonlinear optical (NLO) materials. In this work, taking a photoresponsive carboxylate triphenylamine derivative as an organic ligand, a bismuth-based MOF, Bi-NBC, NBC = 4',4‴,4‴″-nitrilotris(([1,1'-biphenyl]-4-carboxylic acid)) is obtained. Structure determination reveals that it is a potential NLO material derived from its noncentrosymmetric structure, which is finally confirmed by its rarely strong second harmonic generation (SHG) effect. Theoretical calculations reveal that the potential difference around Bi atoms is large; therefore, it leads to a strong local built-in electric field, which greatly facilitates the charge separation and transfer and finally improves the photocatalytic performance. Our results provide a reference for the exploration of MOFs with NLO properties.

2.
Nano Lett ; 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38603798

RESUMO

The fabrication of solid-state proton-conducting electrolytes possessing both high performance and long-life reusability is significant but challenging. An "all-in-one" composite, H3PO4@PyTFB-1-SO3H, including imidazole, sulfonic acid, and phosphoric acid, which are essential for proton conduction, was successfully prepared by chemical post-modification and physical loading in the rationally pre-synthesized imidazole-based nanoporous covalent organic framework (COF), PyTFB-1. The resultant H3PO4@PyTFB-1-SO3H exhibits superhigh proton conductivity with its value even highly up to 1.15 × 10-1 S cm-1 at 353 K and 98% relative humidity (RH), making it one of the highest COF-based composites reported so far under the same conditions. Experimental studies and theoretical calculations further confirmed that the imidazole and sulfonic acid groups have strong interactions with the H3PO4 molecules and the synergistic effect of these three groups dramatically improves the proton conductivity properties of H3PO4@PyTFB-1-SO3H. This work demonstrated that by aggregating multiple proton carriers into one composite, effective proton-conducting electrolyte can be feasibly achieved.

3.
Nat Commun ; 15(1): 1267, 2024 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-38341421

RESUMO

Developing heterogeneous photocatalysts for the applications in harsh conditions is of high importance but challenging. Herein, by converting the imine linkages into quinoline groups of triphenylamine incorporated covalent organic frameworks (COFs), two photosensitive COFs, namely TFPA-TAPT-COF-Q and TFPA-TPB-COF-Q, are successfully constructed. The obtained quinoline-linked COFs display improved stability and photocatalytic activity, making them suitable photocatalysts for photocatalytic reactions under harsh conditions, as verified by the recyclable photocatalytic reactions of organic acid involving oxidative decarboxylation and organic base involving benzylamine coupling. Under strong oxidative condition, the quinoline-linked COFs show a high efficiency up to 11831.6 µmol·g-1·h-1 and a long-term recyclable usability for photocatalytic production of H2O2, while the pristine imine-linked COFs are less catalytically active and easily decomposed in these harsh conditions. The results demonstrate that enhancing the linkage robustness of photoactive COFs is a promising strategy to construct heterogeneous catalysts for photocatalytic reactions under harsh conditions.

4.
Adv Mater ; 36(7): e2308039, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37802505

RESUMO

The buried interface of the perovskite layer has a profound influence on its film morphology, defect formation, and aging resistance from the outset, therefore, significantly affects the film quality and device performance of derived perovskite solar cells. Especially for FAPbI3 , although it has excellent optoelectronic properties, the spontaneous transition from the black perovskite phase to nonperovskite phase tends to start from the buried interface at the early stage of film formation then further propagate to degrade the whole perovskite. In this work, by introducing ─NH3 + rich proline hydrochloride (PF) with a conjugated rigid structure as a versatile medium for buried interface, it not only provides a solid α-phase FAPbI3 template, but also prevents the phase transition induced degradation. PF also acts as an effective interfacial stress reliever to enhance both efficiency and stability of flexible solar cells. Consequently, a champion efficiency of 24.61% (certified 23.51%) can be achieved, which is the highest efficiency among all reported values for flexible perovskite solar cells. Besides, devices demonstrate excellent shelf-life/light soaking stability (advanced level of ISOS stability protocols) and mechanical stability.

5.
Nanomicro Lett ; 15(1): 167, 2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37395847

RESUMO

Perovskite solar cells (PSCs) have attracted aggressive attention in the photovoltaic field in light of the rapid increasing power conversion efficiency. However, their large-scale application and commercialization are limited by the toxicity issue of lead (Pb). Among all the lead-free perovskites, tin (Sn)-based perovskites have shown potential due to their low toxicity, ideal bandgap structure, high carrier mobility, and long hot carrier lifetime. Great progress of Sn-based PSCs has been realized in recent years, and the certified efficiency has now reached over 14%. Nevertheless, this record still falls far behind the theoretical calculations. This is likely due to the uncontrolled nucleation states and pronounced Sn (IV) vacancies. With insights into the methodologies resolving both issues, ligand engineering-assisted perovskite film fabrication dictates the state-of-the-art Sn-based PSCs. Herein, we summarize the role of ligand engineering during each state of film fabrication, ranging from the starting precursors to the ending fabricated bulks. The incorporation of ligands to suppress Sn2+ oxidation, passivate bulk defects, optimize crystal orientation, and improve stability is discussed, respectively. Finally, the remained challenges and perspectives toward advancing the performance of Sn-based PSCs are presented. We expect this review can draw a clear roadmap to facilitate Sn-based PSCs via ligand engineering.

6.
Small ; 19(44): e2303324, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37391273

RESUMO

Converting CO2 into value-added chemicals to solve the issues caused by carbon emission is promising but challenging. Herein, by embedding metal ions (Co2+ , Ni2+ , Cu2+ , and Zn2+ ) into an imidazole-linked robust photosensitive covalent organic framework (PyPor-COF), effective photocatalysts for CO2 conversion are rationally designed and constructed. Characterizations display that all of the metallized PyPor-COFs (M-PyPor-COFs) display remarkably high enhancement in their photochemical properties. Photocatalysis reactions reveal that the Co-metallized PyPor-COF (Co-PyPor-COF) achieves a CO production rate as high as up to 9645 µmol g-1 h-1 with a selectivity of 96.7% under light irradiation, which is more than 45 times higher than that of the metal-free PyPor-COF, while Ni-metallized PyPor-COF (Ni-PyPor-COF) can further tandem catalyze the generated CO to CH4 with a production rate of 463.2 µmol g-1 h-1 . Experimental analyses and theory calculations reveal that their remarkable performance enhancement on CO2 photoreduction should be attributed to the incorporated metal sites in the COF skeleton, which promotes the adsorption and activation of CO2 and the desorption of generated CO and even reduces the reaction energy barrier for the formation of different intermediates. This work demonstrates that by metallizing photoactive COFs, effective photocatalysts for CO2 conversion can be achieved.

7.
Small ; 19(34): e2301998, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37162443

RESUMO

In order to overcome the limitations of supramolecular organic cages for their incomplete accessibility of active sites in the solid state and uneasy recyclability in liquid solution, herein a nitrogen-rich organic cage is rationally linked into framework systems and four isoreticular covalent organic frameworks (COFs), that is, Cage-TFB-COF, Cage-NTBA-COF, Cage-TFPB-COF, and Cage-TFPT-COF, are successfully synthesized. Structure determination reveals that they are all high-quality crystalline materials derived from the eclipsed packing of related isoreticular two-dimensional frameworks. Since the nitrogen-rich sites usually have a high affinity toward iodine species, iodine adsorption investigations are carried out and the results show that all of them display an enhancement in iodine adsorption capacities. Especially, Cage-NTBA-COF exhibits an iodine adsorption capacity of 304 wt%, 14-fold higher than the solid sample packed from the cage itself. The strong interactions between the nitrogen-rich sites and the adsorbed iodine species are revealed by spectral analyses. This work demonstrates that, utilizing the reticular chemistry strategy to extend the close-packed supramolecular organic cages into crystalline porous framework solids, their inherent properties can be greatly exploited for targeted applications.

8.
ACS Nano ; 16(12): 21565-21575, 2022 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-36472955

RESUMO

Developing effective photosensitizers to initiate the generation of singlet oxygen (1O2) is of great significance in both chemistry and physiology. Herein, linking the photoactive porphyrin moieties by in situ-formed robust imidazole groups, a covalent organic framework (COF), PyPor-COF, was successfully designed and synthesized. Detailed characterizations reveal that it not only possesses high crystallinity, permanent porosity, and robust stability but also shows a semiconductive photoresponse activity. As demonstrated by electron paramagnetic resonance experiments, the COF can initiate the generation of 1O2 efficiently under visible-light irradiation, the efficiency of which is higher than that of the pristine porphyrin-based reactant and even higher than some commonly used commercially available photosensitizing agents. Anticancer experiments prove that it can efficiently trigger the production of 1O2 in a physiological environment. This work demonstrates that the imidazole-linked porphyrin-incorporated COF is a highly promising photosensitizer that can even be applied in photodynamic therapy.


Assuntos
Estruturas Metalorgânicas , Fotoquimioterapia , Porfirinas , Oxigênio Singlete , Estruturas Metalorgânicas/química , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/química , Porfirinas/farmacologia , Porfirinas/química , Imidazóis/farmacologia
9.
Langmuir ; 38(34): 10503-10511, 2022 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-35976224

RESUMO

A polyphosphazene with in-built -SO3H moieties (PP-PhSO3H) was facilely synthesized by the polymeric combination of hexachlorocyclotriphosphazene (HCCP) and sulfonate p-phenylenediamine. Characterization reveals that it is a highly stable amorphous polymer. Proton conductivity investigations showed that the synthesized PP-PhSO3H exhibits a proton conductivity of up to 6.64 × 10-2 S cm-1 at 353 K and 98% relative humidity (RH). This value is almost 2 orders of magnitude higher than the corresponding value for its -SO3H-free analogue, PP-Ph, which is 1.72 × 10-4 S cm-1 when measured under the same condition. Consequently, matrix-mixed membranes (labeled PP-PhSO3H-PAN) were further prepared by mixing PP-PhSO3H with polyacrylonitrile (PAN) in different ratios to test its potential application in the proton-exchange membrane (PEM) fuel cell. The analysis results indicate that when the weight ratio of PP-PhSO3H/PAN is 3:1 [named PP-PhSO3H-PAN (3:1)], its proton conductivity can reach up to 5.05 × 10-2 S cm-1 at 353 K and 98% RH, which is even comparable with those of proton-conductive electrolytes currently used in PEM fuel cells. Furthermore, the continuous test demonstrates that the PP-PhSO3H-PAN (3:1) has long-life reusability. This research reveals that by using phosphazene and sulfonated multiple-amine modules as precursors, organic polymers with excellent proton conductivity for the assembly of matrix-mixed membranes in PEM fuel cells can be easily synthesized by a simple polymeric process.

10.
Molecules ; 27(13)2022 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-35807357

RESUMO

Developing a low-cost and effective proton-conductive electrolyte to meet the requirements of the large-scale manufacturing of proton exchange membrane (PEM) fuel cells is of great significance in progressing towards the upcoming "hydrogen economy" society. Herein, utilizing the one-pot acylation polymeric combination of acyl chloride and amine precursors, a polyamide with in-built -SO3H moieties (PA-PhSO3H) was facilely synthesized. Characterization shows that it possesses a porous feature and a high stability at the practical operating conditions of PEM fuel cells. Investigations of electrochemical impedance spectroscopy (EIS) measurements revealed that the fabricated PA-PhSO3H displays a proton conductivity of up to 8.85 × 10-2 S·cm-1 at 353 K under 98% relative humidity (RH), which is more than two orders of magnitude higher than that of its -SO3H-free analogue, PA-Ph (6.30 × 10-4 S·cm-1), under the same conditions. Therefore, matrix-mixed membranes were fabricated by mixing with polyacrylonitrile (PAN) in different ratios, and the EIS analyses revealed that its proton conductivity can reach up to 4.90 × 10-2 S·cm-1 at 353 K and a 98% relative humidity (RH) when the weight ratio of PA-PhSO3H:PAN is 3:1 (labeled as PA-PhSO3H-PAN (3:1)), the value of which is even comparable with those of commercial-available electrolytes being used in PEM fuel cells. Additionally, continuous tests showed that PA-PhSO3H-PAN (3:1) possesses a long-life reusability. This work demonstrates, using the simple acylation reaction with the sulfonated module as precursor, that low-cost and highly effective proton-conductive electrolytes for PEM fuel cells can be facilely achieved.


Assuntos
Nylons , Prótons , Condutividade Elétrica , Eletrólitos , Polímeros
11.
Soft Matter ; 18(29): 5518-5523, 2022 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-35848897

RESUMO

Developing a facile strategy to construct low-cost and efficient proton-conductive electrolytes is pivotal in the practical application of proton exchange membrane (PEM) fuel cells. Herein, a polyamide with in-built -SO3H moieties, PA(PhSO3H)2, was synthesized via a simple one-pot polymeric acylation process. Investigations via electrochemical impedance spectroscopy (EIS) measurements revealed that the fabricated PA(PhSO3H)2 displays a proton conductivity of up to 5.54 × 10-2 S cm-1 at 353 K under 98% relative humidity (RH), which is more than 2 orders of magnitude higher than that of its -SO3H-free analogue PA(Ph)2 (2.38 × 10-4 S cm-1) under the same conditions. Therefore, after mixing with polyacrylonitrile (PAN) at different ratios, PA(PhSO3H)2-based matrix-mixed membranes were subsequently made and the analysis results revealed that the proton conductivity can reach up to 5.82 × 10-2 S cm-1 at 353 K and 98% RH when the weight ratio of PA(PhSO3H)2 : PAN is in 3 : 1 (labeled as PA(PhSO3H)2-PAN(3 : 1)), the value of which is comparable even to those of commercially available electrolytes that are used in PEM fuel cells. In addition, continuous testing shows that PA(PhSO3H)2-PAN(3 : 1) possesses long-life reusability. This work demonstrates that, utilizing the simple reaction of polymeric acylation with a sulfonated module as a precursor, highly effective proton-conductive membranes for PEM fuel cells can be achieved in a facile manner.

12.
Artigo em Inglês | MEDLINE | ID: mdl-35537034

RESUMO

On account of their inherent reactive properties, radical reactions play an important role in organic syntheses. The booming photochemistry provides a feasible approach to trigger the generation of radical intermediates in organic reaction processes. Thus, developing effective photocatalysts becomes the key step in radical reactions. In this work, the triphenylamine moiety with photoactivity is successfully embedded in a highly porous and stable metal-organic framework (MOF), and the obtained MOF, namely, Zr-TCA, naturally displays a photoactive property derived from the triphenylamine-based ligand. In photocatalytic studies, the triphenylamine-based Zr-TCA not only exhibits a high catalytic activity on the aerobic oxidation of sulfides via the generation of the superoxide radical anion (O2•-) under light irradiation but also shows good efficiency in the trifluoromethylation of arenes and heteroarenes by the formation of the trifluoromethyl radical (CF3•) as an intermediate. Moreover, the high performance of Zr-TCA can be well maintained over a wide range of substrates in these radical reactions, and the recycled Zr-TCA still retains its excellent photocatalytic activity. The high recyclability and catalytic efficiency to various substrates make the constructed triphenylamine-based Zr-TCA a promising photocatalyst in diverse radical reactions.

13.
ACS Appl Mater Interfaces ; 13(28): 33218-33225, 2021 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-34228914

RESUMO

Sn-based perovskite solar cells (PSCs) have received extensive attention for photovoltaic applications. Nevertheless, the low crystallization quality of the film due to rapid crystallization results in high trap density of states, which is one of the main reasons for poor performance of Sn-based PSC devices. In this work, we developed a strategy for the formation of FASnI3 perovskites by introducing the addition of formamidine acetate (FAAc). Benefiting from the iodide-coordinated cation (FA+) and crystallization-regulated anion (AC-), FAAc could achieve the high-quality films with suppressed defects. The champion power conversion efficiency (PCE) of FAAc-modified PSC devices reached 9.96%, reserving 82% of their initial PCE of the light aging test over 1500 h. We hope that our finding could provide implications on the high-performance and stable Sn-based PSCs.

14.
Inorg Chem ; 60(14): 10089-10094, 2021 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-34180672

RESUMO

Taking a robust zirconium-based metal-organic framework, UiO-66, as a prototype, functional postmodification via the versatile Cu(I)-catalyzed azide-alkyne "click" reaction was carried out, and sulfonic acid groups were successfully grafted into its skeleton. Characterizations revealed that the MOF network was still well maintained after being treated by "clicked" modification. Investigations by electrochemical impedance spectroscopy measurements revealed that its proton conductivity increases exponentially up to 8.8 × 10-3 S cm-1 at 80 °C and 98% RH, while those of the UiO-66 and UiO-66-NH2 are only 6.3 × 10-6 and 3.5 × 10-6 S cm-1, respectively, at the same condition. Additionally, the continuous test shows it possesses long-life reusability. Such a remarkable enhancement on the proton conductivities and high performance in long-life reusability of the resultant MOF demonstrated that the "click" reaction is a facile reaction in postmodification of robust porous materials toward targeted applications, with which highly promising candidates of proton-conductive electrolytes for applying in proton-exchange-membrane (PEM) fuel cell can be achieved.

15.
ACS Appl Mater Interfaces ; 13(17): 20137-20144, 2021 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-33886272

RESUMO

A zirconium-based metal-organic framework (MOF) was successfully constructed via solvothermal assembly of a triphenylamine-based tricarboxylate ligand and Zr(IV) salt, the structure simulation of which revealed that it possesses a two-dimensional layered framework with a relatively rare dodecnuclear Zr12 cluster as the inorganic building unit. The inherent photo-responsive property derived from the incorporated photochromic triphenylamine groups combined with its high stability makes the constructed MOF an efficient heterogeneous photocatalyst for the oxidation of sulfides, which is a fundamentally important reaction type in both environmental and pharmaceutical industries. The photocatalytic activity of the constructed MOF was first investigated under various conditions with thioanisole as a representative sulfide substrate. The MOF exhibited both high efficiency and selectivity on aerobic oxidation of thioanisole in methanol utilizing molecular oxygen in air as the oxidant under blue light irradiation for 10 h. Its high photocatalytic performance was also observed when extending the sulfide substrate to diverse thioanisole derivatives and even a sulfur-containing nerve agent simulant (2-chloroethyl ethyl sulfide). The high photocatalytic efficiency and selectivity to a broad set of sulfide substrates make the triphenylamine-incorporating zirconium-based MOF a highly promising heterogeneous photocatalyst.

16.
ACS Appl Mater Interfaces ; 13(2): 3325-3335, 2021 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-33400480

RESUMO

Three-dimensional perovskite AMX3 has great potential in photoelectric applications, but the poor stability is a major problem that restricts its practical application. The emergence of lower dimensional perovskite solves this problem. Here, we have synthesized a group of novel low-dimensional perovskites with diverse structures. Different amino acids were incorporated in the perovskite cage. The formulas of the compounds are (A')mPbIm+2 (A' = COOH(CH2)nNH2, n = 1, 3, 5, 7, 9). These families of materials demonstrate structure-related stability, tunable bandgap, and different photoluminescence. Single-crystal X-ray diffraction indicated that the five materials employ different structure types varying from edge-sharing structures to face- and corner-sharing Pb/I structures by adjusting the number of C atoms in organic cations, and the level of [PbI6]4- octahedral distortion was also identified. The film prepared using these materials with longer carbon chains (n = 5, 7, 9) showed better stability, and they did not decompose within one year at 75% RH, 40 °C. The bifunctional organic ions containing carboxyl groups as spacer cations will form additional hydrogen bonding between perovskite layers, resulting in higher stability of the material. The band gaps of these materials vary from 2.19 to 2.6 eV depending on the octahedral connection mode and [PbI6]4- octahedral distortion level, density functional theory calculations (DFT) are consistent with our experimental trends and suggest that the face-sharing structure has the maximum band gap due to its flatter electron band structure. Bright green fluorescence was observed in (COOH(CH2)7NH3)2PbI4 and (COOH(CH2)9NH3)2PbI4 when excited by 365 nm UV light. A thorough comprehension of the structure-property relationships is of great significance for further practical applications of perovskites.

17.
J Phys Chem Lett ; 11(10): 4147-4155, 2020 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-32368918

RESUMO

Helical structures are important features of many important biomacromolecules such as double helices and single α-helices in DNA and protein, respectively, yet the self-organization of short oligopeptides (<3) or independent amino acids into artificial helical structures on the atomic level remains mysterious. Here we present the direct construction of artificial double and single helices from N-terminated aryl amino acids (ferrocene phenylalanine (Phe) conjugates) despite both Phe and Phe-Phe dipeptide self-aggregations adopting supramolecular ß-sheet structures, which also demonstrated chirality evolution exposed to small molecular binders. In the solid state, the box-shaped building unit stacks into a double helix with enantiomer-resolved handedness driven orthogonally by H-bonds and the CH-π interaction. The entire double helix is noncovalently linked except for the hybridization regions. Asymmetric H-bonds between carboxylic acids and amides facilitates the one-dimensional helical packing of amino acid residues. The ditopic building unit adopts intramolecular H-bonds, facilitating single-strand helix formation. In aqueous self-assemblies, the superhelical structures were retained, which underwent chirality transfer and handedness inversion upon complexation orthogonally by H-bonds and charge-transfer interaction, showing adaptivity to environmental factors.


Assuntos
Aminoácidos/síntese química , Dipeptídeos/química , Aminoácidos/química , Ligação de Hidrogênio , Modelos Moleculares , Estrutura Secundária de Proteína
18.
Research (Wash D C) ; 2019: 3206024, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31549056

RESUMO

The reason that the stoichiometry of gas to water in artificial gas hydrates formed on porous materials is much higher than that in nature is still ambiguous. Fortunately, based on our experimental thermodynamic and kinetic study on the gas hydrate formation behavior with classic ordered mesoporous carbon CMK-3 and irregular porous activated carbon combined with density functional theory calculations, we discover a microscopic pathway of the gas hydrate formation on porous materials. Two interesting processes including (I) the replacement of water adsorbed on the carbon surface by gas and (II) further replacement of water in the pore by gas accompanied with the gas condensation in the pore and growth of gas hydrate crystals out of the pore were deduced. As a result, a great enhancement of the selectivity and regeneration for gas separation was achieved by controlling the gas hydrate formation behavior accurately.

19.
Angew Chem Int Ed Engl ; 57(26): 7774-7779, 2018 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-29696772

RESUMO

Determination of molecular structural parameters of hydrophobic cholesterol-naphthalimide conjugates for water binding capabilities as well as their moisture-sensitive supramolecular self-assembly were revealed. Water binding was a key factor in leading trace water-induced crystallization against gelation in apolar solvent. Ordered water molecules entrapped in self-assembly arrays revealed by crystal structures behave as hydrogen-bonding linkers to facilitate three-dimensional growth into crystals rather than one-dimensional gel nanofibers. Water binding was also reflected on the supramolecular chirality inversion of vesicle self-assembly in aqueous media via heating-induced dehydration. Structural parameters that favor water binding were evaluated in detail, which could help rationally design organic building units for advancing soft materials, crystal engineering, and chiral recognition.

20.
Adv Sci (Weinh) ; 5(1): 1700552, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29375976

RESUMO

Manipulating the property transfer in nanosystems is a challenging task since it requires switchable molecular packing such as separate aggregation (self-sorting) or synergistic aggregation (coassembly). Herein, a unique manipulation of self-sorting/coassembly aggregation and the observation of switchable stimulus-responsiveness transfer in a two component self-assembly system are reported. Two building blocks bearing the same cholesterol group give versatile topological structures in polar and nonpolar solvents. One building block (cholesterol conjugated cynanostilbene, CCS) consists of cholesterol conjugated with a cynanostilbene unit, and the other one (C10CN) is comprised of cholesterol connected with a naphthalimide group having a flexible long alkyl chain. Their assemblies including gel, crystalline plates, and vesicles are obtained. In gel and crystalline plate phases, the self-sorting behavior dominates, while synergistic coassembly occurs in vesicle phase. Since CCS having the cyanostilbene group can respond to the light irradiation, it undergoes light-induced chiral amplification. C10CN is thermally responsive, whereby its supramolecular chirality is inversed upon heating. In coassembled vesicles, it is interestingly observed that their responsiveness can be transferred by each other, i.e., the C10CN segment is sensitive to the light irradiation, while CCS is thermoresponsive. This unprecedented behavior of the property transfer may shine a light to the precise fabrication of smart materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...