Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 13(43): 51095-51106, 2021 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-34672516

RESUMO

Thanks to their high conductivity and theoretical capacity, transition metal selenides have demanded significant research attention as prospective anodes for sodium-ion batteries. Nevertheless, their practical applications are hindered by finite cycle life and inferior rate performance because of large volume expansion, polyselenide dissolution, and sluggish dynamics. Herein, the nitrogen-doped carbon (NC)-coated FeSe2 nanoparticles encapsulated in NC nanoboxes (termed FeSe2@NDC NBs) are fabricated through the facile thermal selenization of polydopamine-wrapped Prussian blue precursors. In this composite, the existing nitrogen-doped dual carbon layer improves the intrinsic conductivity and structural integrity, while the unique porous yolk-shell architecture significantly mitigates the volume swelling during the sodium/desodium process. Moreover, the derived Fe-N-C bonds can effectively capture polyselenide, as well as promote Na+ transportation and good reversible conversion reaction. As expected, the FeSe2@NDC NBs deliver remarkable rate performance (374.9 mA h g-1 at 10.0 A g-1) and long-cycling stability (403.3 mA h g-1 over 2000 loops at 5.0 A g-1). When further coupled with a self-made Na3V2(PO4)3@C cathode in sodium-ion full cells, FeSe2@NDC NBs also exhibit considerably high and stable sodium-storage performance.

2.
ACS Appl Mater Interfaces ; 13(42): 49952-49963, 2021 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-34652147

RESUMO

Electrode materials with high conductivities that are compatible with flexible substrates are important for preparing high-capacitance electrode materials and improving the energy density of flexible supercapacitors. Here, we report the design and fabrication of a new type of flexible electrode based on nanosheet architectures of a Co-Fe alloy (FeCo-A) coated with ternary metal sulfide composites (FeCo-Ss) on silver-sputtered carbon cloth. The high conductivity of the flexible substrate and the iron-cobalt alloy skeleton enables good electron transmission through the material. In particular, the outer FeCo-S layer has an average thickness of ∼30 nm, providing many active sites. This layer also inhibits the oxidation of the alloy. The electrode material is close to 20 nm thick, which limits inaccessible volumes and promotes high utilization of FeCo-alloy@FeCo-sulfide (FeCo-A-S). The additive-free FeCo-A-S electrode has a high specific capacitance of 2932.2 F g-1 at 1.0 A g-1 and a superior rate capability. All-solid-state supercapacitors based on these electrodes have a high power density of 8000 W kg-1 and a high energy density of 46.1 W h kg-1.

3.
J Nanosci Nanotechnol ; 21(10): 5319-5328, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-33875125

RESUMO

Transition metal and nitrogen co-doped carbon-based catalysts (TM-N-C) have become the most promising catalysts for Pt/C due to their wide range of sources, low cost, high catalytic activity, excellent stability and strong resistance to poisoning, especially Fe-N-C metal-organic frameworks (MOFs), which are some of the most promising precursors for the preparation of Fe-N-C catalysts due to their inherent properties, such as their highly ordered three-dimensional framework structure, controlled porosity, and tuneable chemistry. Based on these, in this paper, different iron sources were added to synthesis a sort of zeolitic imidazole frameworks (ZIF-8). Then the imidazole salt in ZIF-8 was rearranged into high N-doped carbon by high-temperature pyrolysis to prepare the Fe-N-C catalyst. We studied the physical characteristics of the catalysts by different iron sources and their effects on the catalytic properties of the oxygen reduction reaction (ORR). From the point of morphology, various iron sources have a positive influence on maintaining the morphology of ZIF-8 polyhedron. Fe-N/C-Fe(NO3)3 has the same anion as zinc nitrate, and can maintain a polyhedral morphology after high-temperature calcination. It had the highest ORR catalytic activity compared to the other four catalyst materials, which proved that there is a certain relationship between morphology and performance. This paper will provide a useful reference and new models for the development of high-performance ORR catalysts without precious metals.

4.
J Immunol ; 204(8): 2216-2231, 2020 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-32169843

RESUMO

Nucleotide oligomerization domain-like receptors (NLRs) and RIG-I-like receptors (RLRs) detect diverse pathogen-associated molecular patterns to activate the innate immune response. The role of mammalian NLR NOD1 in sensing bacteria is well established. Although several studies suggest NOD1 also plays a role in sensing viruses, the mechanisms behind this are still largely unknown. In this study, we report on the synergism and antagonism between NOD1 and MDA5 isoforms in teleost. In zebrafish, the overexpression of NOD1 enhances the antiviral response and mRNA abundances of key antiviral genes involved in RLR-mediated signaling, whereas the loss of NOD1 has the opposite effect. Notably, spring viremia of carp virus-infected NOD1-/- zebrafish exhibit reduced survival compared with wild-type counterparts. Mechanistically, NOD1 targets MDA5 isoforms and TRAF3 to modulate the formation of MDA5-MAVS and TRAF3-MAVS complexes. The cumulative effects of NOD1 and MDA5a (MDA5 normal form) were observed for the binding with poly(I:C) and the formation of the MDA5a-MAVS complex, which led to increased transcription of type I IFNs and ISGs. However, the antagonism between NOD1 and MDA5b (MDA5 truncated form) was clearly observed during proteasomal degradation of NOD1 by MDA5b. In humans, the interactions between NOD1-MDA5 and NOD1-TRAF3 were confirmed. Furthermore, the roles that NOD1 plays in enhancing the binding of MDA5 to MAVS and poly(I:C) are also evolutionarily conserved across species. Taken together, our findings suggest that mutual regulation between NOD1 and MDA5 isoforms may play a crucial role in the innate immune response and that NOD1 acts as a positive regulator of MDA5/MAVS normal form-mediated immune signaling in vertebrates.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , RNA Helicases DEAD-box/metabolismo , Proteína Adaptadora de Sinalização NOD1/metabolismo , RNA Viral/metabolismo , Transdução de Sinais/imunologia , Proteínas de Peixe-Zebra/metabolismo , Animais , Sítios de Ligação , Células Cultivadas , Células HEK293 , Células HeLa , Humanos , Imunidade Inata , Proteína Adaptadora de Sinalização NOD1/deficiência , Peixe-Zebra , Proteínas de Peixe-Zebra/deficiência
5.
J Nanosci Nanotechnol ; 19(12): 7777-7784, 2019 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-31196289

RESUMO

Activated carbon support Pd nanoparticles (NPs) modified by various WO3-shaped catalysts were prepared and applied as an efficient anode catalyst for direct formic acid fuel cells. Three forms of WO3 (nanosheets, nanoparticles, nanobars) modified activated carbon hybrids were first prepared via different syntheses, and then used as supports to synthesize three types of Pd-WO3/C catalysts by a NaBH4 reduction method. The morphology, structure, and electrochemical performances of the as-prepared Pd-WO3/C catalysts were characterized and analyzed. We can see that the noble metal particles loaded with activated carbon modified by WO3 exhibit small particle size and uniform dispersion from the transmission electron microscope image. The synthesized composite catalysts was used for the formic acid electrooxidation and showed excellent catalytic performance. The oxidation peak current density of the Pd/WO3-Nanosheets/C (40.04 mA·cm-2 was the highest, approximately 1.2 times that of Pd/C (33.00 mA·cm-2. Additionally, the long-term stability (i-t) test results show that the Pd/WO3-Nanosheets/C catalyst exhibits superior stability during formic acid electrooxidation. The reason for the increase in performance can be attributed to the following: the large specific surface area of WO3 decreases the adsorption strength of intermediates such as COad on Pd and prevents the accumulation of poisonous intermediates, thereby promoting the oxidation reaction of formic acid in the direct pathway; the catalyst-support interaction between precious metal Pd and WO3, substantially improving the catalytic performance of Pd-WO3/C catalysts.

6.
Mol Biol Evol ; 35(8): 1901-1915, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29718509

RESUMO

Unlike most crops, which were domesticated through long periods of selection by ancient humans, horticultural plants were primarily domesticated through intentional selection over short time periods. The molecular mechanisms underlying the origin and spread of novel traits in the domestication process have remained largely unexplored in horticultural plants. Gloxinia (Sinningia speciosa), whose attractive peloric flowers influenced the thoughts of Darwin, have been cultivated since the early 19th century, but its origin and genetic basis are currently unknown. By employing multiple experimental approaches including genetic analysis, genotype-phenotype associations, gene expression analysis, and functional interrogations, we showed that a single gene encoding a TCP protein, SsCYC, controls both floral orientation and zygomorphy in gloxinia. We revealed that a causal mutation responsible for the development of peloric gloxinia lies in a 10-bp deletion in the coding sequence of SsCYC. By combining genetic inference and literature searches, we have traced the putative ancestor and reconstructed the domestication path of the peloric gloxinia, in which a 10-bp deletion in SsCYC under selection triggered its evolution from the wild progenitor. The results presented here suggest that a simple genetic change in a pleiotropic gene can promote the elaboration of floral organs under intensive selection pressure.


Assuntos
Domesticação , Evolução Molecular , Flores/genética , Pleiotropia Genética , Magnoliopsida/genética , Flores/crescimento & desenvolvimento , Flores/ultraestrutura , Mutação com Perda de Função , Magnoliopsida/crescimento & desenvolvimento , Magnoliopsida/metabolismo , Magnoliopsida/ultraestrutura , Fenótipo , Proteínas de Plantas/metabolismo , Seleção Artificial
7.
CNS Neurosci Ther ; 23(6): 535-541, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28429535

RESUMO

AIMS: A successful cephalosomatic anastomosis ("head transplant") requires, among others, the ability to control long-term immune rejection and avoidance of ischemic events during the head transference phase. We developed a bicephalic model of head transplantation to study these aspects. METHODS AND RESULTS: The thoracic aorta and superior vena cava of a donor rat were anastomosed with the carotid artery and extracorporeal veins of a recipient rat by vascular grafts. Before thoracotomy in the donor rat, the axillary artery and vein of the donor were connected to the carotid and the extracranial vein of the third rat through a silicone tube. The silicone tube was passed through a peristaltic pump to ensure donor brain tissue blood supply. There is no ischemia reperfusion injury in donor brain tissue analyzed by electroencephalogram. Postoperative donor has pain reflex and corneal reflex. CONCLUSIONS: Peristaltic pump application can guarantee the blood supply of donor brain tissue per unit time, while the application of temperature change device to the silicone tube can protect the brain tissue hypothermia, postoperative experimental data show that there is no brain tissue ischemia during the whole operation. The application of vascular grafting can also provide the possibility of long-term survival of the model.


Assuntos
Circulação Cruzada/métodos , Cabeça , Transplante/métodos , Animais , Eletrocardiografia , Eletroencefalografia , Cabeça/irrigação sanguínea , Cabeça/cirurgia , Masculino , Modelos Animais , Oxigênio/sangue , Ratos , Ratos Wistar , Transplante Homólogo
8.
Front Plant Sci ; 7: 1952, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28066499

RESUMO

Leucine-rich repeat receptor-like protein kinases (LRR-RLKs) are the largest group of receptor-like kinases, which are one of the largest protein superfamilies in plants, and play crucial roles in development and stress responses. Although the evolution of LRR-RLK families has been investigated in some eudicot and monocot plants, no comprehensive evolutionary studies have been performed for these genes in basal angiosperms like Amborella trichopoda. In this study, we identified 94 LRR-RLK genes in the genome of A. trichopoda. The number of LRR-RLK genes in the genome of A. trichopoda is only 17-50% of that of several eudicot and monocot species. Tandem duplication and whole-genome duplication have made limited contributions to the expansion of LRR-RLK genes in A. trichopoda. According to the phylogenetic analysis, all A. trichopoda LRR-RLK genes can be organized into 18 subfamilies, which roughly correspond to the LRR-RLK subfamilies defined in Arabidopsis thaliana. Most LRR-RLK subfamilies are characterized by highly conserved protein structures, motif compositions, and gene structures. The unique gene structure, protein structures, and protein motif compositions of each subfamily provide evidence for functional divergence among LRR-RLK subfamilies. Moreover, the expression data of LRR-RLK genes provided further evidence for the functional diversification of them. In addition, selection analyses showed that most LRR-RLK protein sites are subject to purifying selection. Our results contribute to a better understanding of the evolution of LRR-RLK gene family in angiosperm and provide a framework for further functional investigation on A. trichopoda LRR-RLKs.

9.
CNS Neurosci Ther ; 21(8): 615-8, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26096690

RESUMO

AIMS: The mouse model of allo-head and body reconstruction (AHBR) has recently been established to further the clinical development of this strategy for patients who are suffering from mortal bodily trauma or disease, yet whose mind remains healthy. Animal model studies are indispensable for developing such novel surgical practices. The goal of this work was to establish head transplant mouse model, then the next step through the feasible biological model to investigate immune rejection and brain function in next step, thereby promoting the goal of translation of AHBR to the clinic in the future. METHODS AND RESULTS: Our approach involves retaining adequate blood perfusion in the transplanted head throughout the surgical procedure by establishing donor-to-recipient cross-circulation by cannulating and anastomosing the carotid artery on one side of the body and the jugular vein on the other side. Neurological function was preserved by this strategy as indicated by electroencephalogram and intact cranial nerve reflexes. CONCLUSIONS: The results of this study support the feasibility of this method for avoiding brain ischemia during transplantation, thereby allowing for the possibility of long-term studies of head transplantation.


Assuntos
Cabeça , Transplante Homólogo/métodos , Animais , Encéfalo/fisiologia , Isquemia Encefálica/prevenção & controle , Eletrocardiografia , Eletroencefalografia , Estudos de Viabilidade , Cabeça/cirurgia , Coração/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Modelos Animais
10.
CNS Neurosci Ther ; 20(12): 1056-60, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25367718

RESUMO

AIMS: There is still no effective way to save a surviving healthy mind when there is critical organ failure in the body. The next frontier in CTA is allo-head and body reconstruction (AHBR), and just as animal models were key in the development of CTA, they will be crucial in establishing the procedures of AHBR for clinical translation. METHODS AND RESULTS: Our approach, pioneered in mice, involves retaining the donor brain stem and transplanting the recipient head. Our preliminary data in mice support that this allows for retention of breathing and circulatory function. Critical aspects of the current protocol include avoiding cerebral ischemia through cross-circulation (donor to recipient) and retaining the donor brain stem. Successful clinical translation of AHBR will become a milestone of medical history and potentially could save millions of people. CONCLUSIONS: This experimental study has confirmed a method to avoid cerebral ischemia during the surgery and solved an important part of the problem of how to accomplish long-term survival after transplantation and preservation of the donor brain stem.


Assuntos
Cabeça/cirurgia , Procedimentos de Cirurgia Plástica/métodos , Transplante Homólogo/métodos , Animais , Eletrocardiografia , Eletroencefalografia , Camundongos , Camundongos Endogâmicos , Modelos Animais , Sinais Vitais/fisiologia
11.
J Pharm Pharmacol ; 66(9): 1265-70, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24720795

RESUMO

OBJECTIVES: To investigate the protective effect of catalpol on cerebral ischaemia/reperfusion (CI/R) injury in gerbils and further explore the underlying mechanism. METHODS: A gerbil model of CI/R was prepared by bilateral common carotid occlusion for 10 min followed by 6 h reperfusion. Catalpol (5, 10 or 20 mg/kg per day) was injected intraperitoneally for 3 days before the carotid occlusion. Stroke index was measured during the reperfusion. The contents of endogenous neuropeptides, endothelin-1 (ET-1) and calcitonin gene-related peptide in plasma were evaluated by radioimmunoassay. Superoxide dismutase (SOD) and malondialdehyde (MDA) in brain tissue homogenate were also examined. KEY FINDINGS: The results showed that catalpol significantly improved the stroke index compared with CI/R control group (P < 0.05 or P < 0.01). Catalpol significantly increased the activity of SOD at the doses of 10 and 20 mg/kg (P ≤ 0.05), decreased the brain MDA content and the plasma level of ET-1 at the doses of 10 and 20 mg/kg (P ≤ 0.01). CONCLUSIONS: These data suggested that the efficacy of catalpol pretreatment on CI/R injury may be attributed to reduction of free radicals and inhibition of lipid peroxidation and ET-1 production.


Assuntos
Isquemia Encefálica/tratamento farmacológico , Encéfalo/efeitos dos fármacos , Infarto Cerebral/tratamento farmacológico , Glucosídeos Iridoides/uso terapêutico , Fitoterapia , Traumatismo por Reperfusão/prevenção & controle , Acidente Vascular Cerebral/prevenção & controle , Animais , Encéfalo/metabolismo , Isquemia Encefálica/metabolismo , Peptídeo Relacionado com Gene de Calcitonina/sangue , Infarto Cerebral/metabolismo , Modelos Animais de Doenças , Endotelina-1/sangue , Feminino , Radicais Livres/metabolismo , Gerbillinae , Injeções Intraperitoneais , Glucosídeos Iridoides/farmacologia , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , Malondialdeído/metabolismo , Neuropeptídeos/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Rehmannia/química , Traumatismo por Reperfusão/sangue , Traumatismo por Reperfusão/metabolismo , Superóxido Dismutase/metabolismo
12.
Nanoscale Res Lett ; 7(1): 178, 2012 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-22401297

RESUMO

In this work, bipolar resistive switching characteristics were demonstrated in the Pt/ZnO/Pt structure. Reliability tests show that ac cycling endurance level above 106 can be achieved. However, significant window closure takes place after about 102 dc cycles. Data retention characteristic exhibits no observed degradation after 168 h. Read durability shows stable resistance states after 106 read times. The current transportation in ZnO films is dominated by the hopping conduction and the ohmic conduction in high-resistance and low-resistance states, respectively. Therefore, the electrical parameters of trap energy level, trap spacing, Fermi level, electron mobility, and effective density of states in conduction band in ZnO were identified.

13.
Guang Pu Xue Yu Guang Pu Fen Xi ; 31(8): 2081-5, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22007389

RESUMO

A novel thickness measurement method for surface insulation coating of silicon steel based on NIR spectrometry is explored. The NIR spectra of insulation coating of silicon steel were collected by acousto-optic tunable filter (AOTF) NIR spectrometer. To make full use of the effective information of NIR spectral data, discrete binary particle swarm optimization (DBPSO) algorithm was used to select the optimal wavelength variates. The new spectral data, composed of absorbance at selected wavelengths, were used to create the thickness quantitative analysis model by kernel partial least squares (KPLS) algorithm coupled with Boosting. The results of contrast experiments showed that the Boosting-KPLS model could efficiently improve the analysis accuracy and speed. It indicates that Boosting-KPLS is a more accurate and robust analysis method than KPLS for NIR spectral analysis. The maximal and minimal absolute error of 30 testing samples is respectively--0.02 microm and 0.19 microm, and the maximal relative error is 14.23%. These analysis results completely meet the practical measurement need.

14.
Guang Pu Xue Yu Guang Pu Fen Xi ; 28(9): 2111-4, 2008 Sep.
Artigo em Chinês | MEDLINE | ID: mdl-19093572

RESUMO

The vibrational spectra of ethyl hexanoate were calculated by the density functional theory (DFT) with B3LYP complex function, diffuse function and polarization function added to heavy atoms and light atoms. On the base of this, the normal Raman spectrum (NRS) and the infrared spectrum (IR) were assigned in detail in the present paper. Comparing the calculated results with the experimental data, the calculated results are in good agreement with the experimental results. The comparison of the experimental Raman and infrared spectra shows that in the experimental Raman spectrum, the strongest bands appear at the frequencies of 2600-3100 cm(-1), while the strongest band is not 1734 cm(-1) but 1444 cm(-1) at the frequencies of 400-2000 cm(-1). The band 1734 cm(-1) attributed to the C=O stretch vibration is the distinctive mark of organic ester compounds, and the band 1444 cm(-1) is related to the symmetric and anti-symmetric scissors vibration of C-H. In the experimental infrared spectrum, the strongest vibrational band is 1739 cm(-1), which is related to C=O stretch vibration; At the frequencies of 400-2000 cm(-1), the relative intensity of the infrared spectrum is distinctively stronger than that of the Raman spectrum, but the relative intensity of infrared spectrum is weaker than that of the Raman spectrum at the frequencies of 2600-3100 cm(-1). In the frequencies of 2600-2800 cm(-1), the vibrational bands 2762 and 2732 cm(-1) do not appear in the experimental spectra, which may originate from two reasons: (1) the weak interaction of molecules. Also, the relative intensity of these vibrational bands is very weak in the experimental spectra, and this may testify that the interaction of molecules is rather weak; (2) the vibrational bands may belong to second order vibrational mode at the frequencies of 2600-2800 cm(-1). The relative intensity of infrared bands is weaker than that of the Raman bands at the frequencies of 2600-2800 cm(-1). At the end, the stronger bands appearing in Raman and infrared experimental spectra are assigned as characteristic marks, respectively. The study on vibrational spectra of ethyl hexanoate molecule may have great application value in detection of liquor flavor, chemical industry and biology fields, providing important reference value for the related basic research field.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...