Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Environ Sci Pollut Res Int ; 31(9): 13965-13980, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38265591

RESUMO

Di (2-ethyl-hexyl) phthalate (DEHP) mainly enters the human body through the digestive tract, respiratory tract, and skin. At the same time, it has reproductive and developmental toxicity, neurotoxicity, and so on, which can cause the decrease of sperm motility. Asthenospermia is also known as low sperm motility, and the semen quality of men in some areas of China is declining year by year. Interestingly, previous studies have shown that sleep disorders can also lead to asthenospermia. However, the relationship between sleep, DEHP, and asthenospermia is still unclear. Analysis of the National Health and Nutrition Examination Survey (NHANES) population database showed that DEHP was associated with sleep disorders, and subsequent experiments in mice and Drosophila indicated that DEHP exposure had certain effects on sleep and asthenospermia. Furthermore, we analyzed the Comparative Toxicogenomics Database (CTD) to find out the common signaling pathway among the three: hypoxia-inducible factor 1(HIF-1). Then Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) was used to screen out the proteins that DEHP affected the HIF-1 pathway: glyceraldehyde-3-phosphate dehydrogenase (GAPDH), serine/threonine-protein kinase (AKT1), epidermal growth factor receptor (EGFR), and finally Western blot analysis was used to detect the expression levels of the three proteins. Compared with the control group, DEHP decreased the protein expression levels of GAPDH and AKT1 in the HIF-1 pathway, and caused sleep disorders and decreased sperm motility. This study provides preliminary evidence for exploring the mechanism among DEHP, sleep disorders, and asthenospermia.


Assuntos
Dietilexilftalato , Ácidos Ftálicos , Transtornos do Sono-Vigília , Humanos , Masculino , Animais , Camundongos , Dietilexilftalato/toxicidade , Análise do Sêmen , Inquéritos Nutricionais , Motilidade dos Espermatozoides , Sono
3.
Virus Res ; 331: 199126, 2023 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-37105436

RESUMO

The emergence of Carbapenem-resistant Klebsiella pneumoniae (CRKP) represents a threat to public health. Polymyxin-B is generally considered a last-resort antibiotic. In this study, we isolated a carbapenem- and polymyxin-B resistant K. pneumoniae phage BL02 for the first time in Southwestern China and evaluated its biological characteristics and whole-genome sequence. Polymyxin-B resistant K. pneumoniae, (CK02), was isolated from the blood of a male with severe septic shock, and phage BL02 was screened and purified from the hospital sewage. BL02 could lyse 40 out of 46 CRKP isolates (86.96%) and has high activity in the pH range of 6-10 and the temperature range of 4-55 °C. The latency period of BL02 was about 10 min and the lysis period was about 50 min. The genome results showed that BL02 was a linear dsDNA with a total length of 175,595 bp and a GC content of 41.83%. A total of 275 ORFs were predicted and no tRNA, rRNA, drug resistance genes, or virulence genes were found in the genome. Phylogenetic analysis showed that BL02 belongs to the family Straboviridae. Treatment of infected mice with two antibiotics (tigecycline or ceftazidime/avibactam) resulted in 7-day survival rates of 28.57% and 42.86%, respectively. In contrast, the survival rate of mice in the single-dose BL02-treated group was 71.43%. In summary, this preclinical study isolated a phage capable of lysing polymyxin-B resistant K. pneumoniae and validated its safety and efficacy in an in vivo model, which provides a reference for further research on controlling MDR pathogens.


Assuntos
Bacteriófagos , Infecções por Klebsiella , Masculino , Animais , Camundongos , Polimixina B/farmacologia , Polimixina B/uso terapêutico , Carbapenêmicos/farmacologia , Carbapenêmicos/uso terapêutico , Klebsiella pneumoniae/genética , Esgotos , Bacteriófagos/genética , Filogenia , Infecções por Klebsiella/tratamento farmacológico , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Testes de Sensibilidade Microbiana
4.
Front Microbiol ; 13: 1000526, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36212845

RESUMO

Juniper essential oil (JEO), which is mostly known as an immune system booster and effective detoxifier, has substantial antimicrobial activity. A comparison of the inhibitory effects of three plant essential oils from juniper (Juniperus rigida), cedarwood (Juniperus virginiana), and cypress (Crupressus sempervirens) on four plant pathogenic fungi indicated that JEO was the most effective at inhibiting the growth of gray mold (Botrytis cinerea). Additional studies were subsequently conducted to explore the in vivo and in vitro antifungal activity and possible mechanism of JEO against B. cinerea. The results show that JEO inhibited the germination of spores and mycelial growth of B. cinerea in a concentration-dependent manner and exhibited strong inhibition when its concentration exceeded 10 µL/mL. JEO also significantly inhibited the incidence of disease and diameters of gray mold lesions on cherry tomato fruit (Solanum lycopersicum). After 12 h of treatment with JEO, the extracellular conductivity, and the contents of soluble protein, malondialdehyde, and hydrogen peroxide were 3.1, 1.2, 7.2, and 4.7 folds higher than those of the control group, respectively (P < 0.05), which indicated that JEO can damage membranes. Scanning electron microscopy observations revealed that JEO affected the morphology of mycelia, causing them to shrivel, twist and distort. Furthermore, JEO significantly improved the activities of the antioxidant-related enzymes superoxide dismutase and catalase but reduced the pathogenicity-related enzymes polygalacturonase (PG), pectin lyase and endoglucanase of B. cinerea (P < 0.05). In particular, PG was reduced by 93% after treatment with JEO for 12 h. Moreover, the 18 constituents of JEO were identified by gas chromatography/mass spectrometry (GC-MS) analysis, mainly limonene (15.17%), γ-terpinene (8.3%), ß-myrcene (4.56%), terpinen-4-ol (24.26%), linalool (8.73%), α-terpineol (1.03%), o-cymene (8.35%) and other substances with antimicrobial activity. Therefore, JEO can be an effective alternative to prevent and control gray mold on cherry tomato fruit.

5.
Pestic Biochem Physiol ; 181: 105012, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35082035

RESUMO

Due to its biological activity, carvacrol (CAR) is widely used in medicine, agriculture, and forestry. Our previous studies showed that in Lymantria dispar larvae, CAR treatment can induce the production of antifeedants and lead to growth inhibition and death of larvae. However, the effect CAR exerts on RNA levels in L. dispar larvae remains unclear. In this study, the Illumina HiSeq4000 sequencing platform was used to sequence the total RNA of L. dispar larvae. A total of six cDNA libraries (three treatments and three controls) were established and 39,807 genes were generated. Compared with the control group, 296 differentially expressed genes (DEGs) (142 up-regulated and 154 down-regulated) were identified after CAR treatment. GO and KEGG enrichment analyses showed that these DEGs mainly clustered in the metabolism of xenobiotics, carbohydrates, and lipids. Furthermore, 12 DEGs were found to be involved in detoxification, including six cytochrome P450s, two esterases, one glutathione peroxidase, one UDP-glycosyltransferase gene, and two genes encoding heat shock proteins. The expression levels of detoxification genes changed under CAR treatment (especially P450s), which further yielded candidate genes for explorations of the insecticidal mechanism of CAR. The reliability of transcriptome data was verified by qRT-PCR. The enzyme activities of CYP450 and acid phosphatase significantly increased (by 38.52 U/mg·prot and 0.12 µmol/min·mg, respectively) 72 h after CAR treatment. However, the activity of alkaline phosphatase did not change significantly. These changes in enzyme activity corroborated the reliability of the transcriptome data at the protein level. The results of GO enrichment analysis of DEGs indicated that CAR influenced the oxidation-reduction process in L. dispar larvae. Furthermore, CAR can cause oxidative stress in L. dispar larvae, identified through the determination of peroxidase and polyphenol oxidase activities, total antioxidant capacity, and hydrogen peroxide content. This study provides useful insight into the insecticidal mechanism of CAR.


Assuntos
Mariposas , Transcriptoma , Animais , Cimenos , Perfilação da Expressão Gênica , Larva/genética , Mariposas/genética , Reprodutibilidade dos Testes
6.
Huan Jing Ke Xue ; 42(7): 3281-3290, 2021 Jul 08.
Artigo em Chinês | MEDLINE | ID: mdl-34212654

RESUMO

In this study, indoor simulation experiments were performed to elucidate the effects of migration and transformation of dissolving organic matter (DOM) during the decay of algal blooms. Based on ultraviolet-visible spectra (UV-vis) and excitation-emission matrix spectroscopy (EEMs), spectral characterizations of dissolved organic matter (DOM) in overlying water were evaluated with analyses of the physical and chemical indexes, variation in dissolved organic carbon (DOC), and variation in dissolved inorganic carbon (DIC). Results showed that at the early stage of decay, a large amount of organic matter was released, and dissolved oxygen (DO) decreased sharply. With the extension of reaction time, DOC gradually changed into DIC, which further changed the oxidation-reduction and acid-base characteristics of the water. UV-vis spectra showed that a large amount of DOM was released with high aromaticity and a high degree of humification, and the released DOM was gradually degraded. With the application of parallel factor analysis in excitation-emission matrix spectroscopy (EEM-PARAFAC), three fluorescence components were analyzed:refractory humic-like substances (C1), protein-like tryptophan substances (C2) produced by algae, and fulvic-like substances (C3) related to microbial activities. Most protein-like tryptophan substances were degraded into fulvic-like substances by microorganisms during the decaying process. Heterotrophic microorganisms promoted the release of algae-derived DOM and accelerated the degradation of DOM. The DOM born during algae blooms decaying process was eventually converted into humic-like substance, which was difficult to be degraded. We analyzed correlations of water quality, UV-vis spectrum, and EEMs parameters. Results showed that ORP was positively correlated (P<0.05) with DO. There was a significant negative correlation (P<0.05) between pH and DOC, which was consistent with the trend of the transformation to from DOC to DIC; C1 was positively correlated (P<0.05) with Fn355; and C2 was significantly positively correlated (P<0.05) with DOC and Fn280; C3 was positively correlated (P<0.05) with FI, BIX and ß:α. The variation trend of these spectral parameters was consistent with that of DOM components. In summary, with the analyses of water quality characteristics and spectral characteristics of DOM in overlying water during algae blooms decaying process, it was expected that our results could contribute to the further exploration of the dynamic migration and transformation of lake DOM and the changes of carbon cycling.


Assuntos
Substâncias Húmicas , Água , Eutrofização , Substâncias Húmicas/análise , Lagos , Espectrometria de Fluorescência
7.
Asian J Androl ; 23(4): 396-399, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33565428

RESUMO

Optimal vision and ergonomics are essential factors contributing to the achievement of good results during microsurgery. The three-dimensional (3D) digital image microscope system with a better 3D depth of field can release strain on the surgeon's neck and back, which can improve outcomes in microsurgery. We report a randomized prospective study of vasoepididymostomy and vasovasostomy using a 3D digital image microscope system (3D-DIM) in rats. A total of 16 adult male rats were randomly divided into two groups of 8 each: the standard operating microscope (SOM) group and the 3D-DIM group. The outcomes measured included the operative time, real-time postoperative mechanical patency, and anastomosis leakage. Furthermore, a user-friendly microscope score was designed to evaluate the ergonomic design and equipment characteristics of the microscope. There were no differences in operative time between the two groups. The real-time postoperative mechanical patency rates were 100.0% for both groups. The percentage of vasoepididymostomy anastomosis leakage was 16.7% in the SOM group and 25.0% in the 3D-DIM group; however, no vasovasostomy anastomosis leakage was found in either group. In terms of the ergonomic design, the 3D-DIM group obtained better scores based on the surgeon's feelings; in terms of the equipment characteristics, the 3D-DIM group had lower scores for clarity and higher scores for flexibility and adaptivity. Based on our randomized prospective study in a rat model, we believe that the 3D-DIM can improve surgeon comfort without compromising outcomes in male infertility reconstructive microsurgery, so the 3D-DIM might be widely used in the future.


Assuntos
Microcirurgia/normas , Vasovasostomia/instrumentação , Animais , Modelos Animais de Doenças , Microscopia de Vídeo/instrumentação , Microscopia de Vídeo/métodos , Microcirurgia/métodos , Microcirurgia/estatística & dados numéricos , Ratos , Ratos Sprague-Dawley , Vasovasostomia/métodos
8.
Bioengineered ; 11(1): 449-462, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32208897

RESUMO

Human dental pulp cells (hDPCs) possess the capacity to differentiate into odontoblast-like cells in response to exogenous stimuli. Histone methylation is one of the most robust epigenetic marks and is essential for the regulation of multiple cellular processes. Previous studies have shown that histone methyltransferases (HMTs) and histone demethylases (HDMs) are crucial for the osteogenic differentiation of human bone marrow, adipose tissue, and tooth tissue. However, little is known about the role of histone methylation in hDPC differentiation. Here, the expression levels of HMTs and HDMs were profiled in hDPCs undergoing odontogenic induction. Among several differentially expressed enzymes, HDM KDM5A demonstrated significantly enhanced expression during cytodifferentiation. Furthermore, KDM5A expression increased during early passages and in a time-dependent manner during odontogenic induction. Using a shRNA-expressing lentivirus, KDM5A was knocked down in hDPCs. KDM5A depletion resulted in greater alkaline phosphatase activity and more mineral deposition formation. Meanwhile, the expression levels of the odontogenic markers DMP1, DSPP, OSX, and OCN were increased by KDM5A knockdown. As a histone demethylase specific for tri- and dimethylated histone H3 at lysine 4 (H3K4me3/me2), KDM5A deficiency led to a significant increment in total H3K4me3 levels, whereas no significant difference was found for H3K4 me2. H3K4me3 levels on the promoters of the odontogenic markers increased after KDM5A knockdown in hDPCs. These results demonstrated that KDM5A is present in hDPCs and inhibits the odontogenic differentiation potentiality of hDPCs by removing H3K4me3 from specific gene promoters, suggesting that KDM5A-dependent histone demethylation may play an important role in reparative dentinogenesis.


Assuntos
Diferenciação Celular/fisiologia , Polpa Dentária/citologia , Odontogênese/fisiologia , Proteína 2 de Ligação ao Retinoblastoma/metabolismo , Adolescente , Adulto , Fosfatase Alcalina/genética , Fosfatase Alcalina/metabolismo , Western Blotting , Diferenciação Celular/genética , Células Cultivadas , Imunoprecipitação da Cromatina , Humanos , Odontogênese/genética , Reação em Cadeia da Polimerase em Tempo Real , Proteína 2 de Ligação ao Retinoblastoma/genética , Adulto Jovem
9.
Bioresour Technol ; 226: 262-266, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27993445

RESUMO

The synthesis of cellulase in filamentous fungi can be triggered by several inducers. In this study, a bamboo-shoot shell pretreated with Pleurotus ostreatus could promote the formation of cellulases in Aspergillus niger. Further identification, including UPLC-TOF-MS, ultrafiltration, and FT-IR, denoted that the soluble inducer was not a traditional disaccharide but a type of modified lignin polymer. This revelation may result in incipient strategies to ameliorate cellulase productivity.


Assuntos
Aspergillus niger/enzimologia , Celulase/biossíntese , Água/química , Celulose/química , Cromatografia Líquida de Alta Pressão , Hidrólise , Microbiologia Industrial , Resíduos Industriais , Lignina/química , Espectrometria de Massas , Pleurotus/enzimologia , Polímeros/química , Sasa , Espectroscopia de Infravermelho com Transformada de Fourier , Ultrafiltração
10.
Int J Oral Sci ; 8(2): 110-6, 2016 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-27357322

RESUMO

Human dental pulp cells (hDPCs) possess the capacity to differentiate into odontoblast-like cells and generate reparative dentin in response to exogenous stimuli or injury. Ten-eleven translocation 1 (TET1) is a novel DNA methyldioxygenase that plays an important role in the promotion of DNA demethylation and transcriptional regulation in several cell lines. However, the role of TET1 in the biological functions of hDPCs is unknown. To investigate the effect of TET1 on the proliferation and odontogenic differentiation potential of hDPCs, a recombinant shRNA lentiviral vector was used to knock down TET1 expression in hDPCs. Following TET1 knockdown, TET1 was significantly downregulated at both the mRNA and protein levels. Proliferation of the hDPCs was suppressed in the TET1 knockdown groups. Alkaline phosphatase activity, the formation of mineralized nodules, and the expression levels of DSPP and DMP1 were all reduced in the TET1-knockdown hDPCs undergoing odontogenic differentiation. Based on these results, we concluded that TET1 knockdown can prevent the proliferation and odontogenic differentiation of hDPCs, which suggests that TET1 may play an important role in dental pulp repair and regeneration.


Assuntos
Proliferação de Células , Polpa Dentária , Oxigenases de Função Mista/metabolismo , Odontogênese , Proteínas Proto-Oncogênicas/metabolismo , Fosfatase Alcalina , Diferenciação Celular , Células Cultivadas , Proteínas da Matriz Extracelular , Humanos , Odontoblastos , Fosfoproteínas
12.
Asian J Androl ; 5(3): 251-4, 2003 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-12937811

RESUMO

AIM: To study the clinical features of male genital schwannoma. METHODS: Five male patients with genital schwannoma admitted from 1991 to 2000 were reviewed. The lesions were located in the prostate, spermatic cord, testis or penis. Tumors were simply resected in 3 patients and radically eradicated in 2. RESULTS: The average age of the cohort was 37 years. The most common sign at presentation was a palpable genital mass accidentally discovered by the patient or detected by the physician during a physical check. Diagnosis was made through postoperative pathological examination. Follow-up ranged from 2 years to 6 years (mean 4.5 years). Four cases were cured by simple excision and 1 patient with malignant testis schwannoma died of recurrence 1 year after surgery. CONCLUSION: Owing to the lack of characteristic clinical manifestation, the final diagnosis relies on postoperative pathological examination. S-100 and vimentin are useful markers for the diagnosis of these tumors.


Assuntos
Neoplasias dos Genitais Masculinos/patologia , Neurilemoma/patologia , Adulto , Idoso , Neoplasias dos Genitais Masculinos/diagnóstico , Humanos , Masculino , Pessoa de Meia-Idade , Neurilemoma/diagnóstico , Neoplasias Penianas/diagnóstico , Neoplasias Penianas/patologia , Neoplasias da Próstata/diagnóstico , Neoplasias da Próstata/patologia , Neoplasias Testiculares/diagnóstico , Neoplasias Testiculares/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...