Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(13)2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-39000847

RESUMO

In the development of the Power Industry Internet of Things, the security of data interaction has always been an important challenge. In the power-based blockchain Industrial Internet of Things, node data interaction involves a large amount of sensitive data. In the current anti-leakage strategy for power business data interaction, regular expressions are used to identify sensitive data for matching. This approach is only suitable for simple structured data. For the processing of unstructured data, there is a lack of practical matching strategies. Therefore, this paper proposes a deep learning-based anti-leakage method for power business data interaction, aiming to ensure the security of power business data interaction between the State Grid business platform and third-party platforms. This method combines named entity recognition technologies and comprehensively uses regular expressions and the DeBERTa (Decoding-enhanced BERT with disentangled attention)-BiLSTM (Bidirectional Long Short-Term Memory)-CRF (Conditional Random Field) model. This method is based on the DeBERTa (Decoding-enhanced BERT with disentangled attention) model for pre-training feature extraction. It extracts sequence context semantic features through the BiLSTM, and finally obtains the global optimal through the CRF layer tag sequence. Sensitive data matching is performed on interactive structured and unstructured data to identify privacy-sensitive information in the power business. The experimental results show that the F1 score of the proposed method in this paper for identifying sensitive data entities using the CLUENER 2020 dataset reaches 81.26%, which can effectively prevent the risk of power business data leakage and provide innovative solutions for the power industry to ensure data security.

2.
IEEE Trans Pattern Anal Mach Intell ; 46(5): 3169-3182, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38039175

RESUMO

Various correlations hidden in crowdsourcing annotation tasks bring opportunities to further improve the accuracy of label aggregation. However, these relationships are usually extremely difficult to be modeled. Most existing methods can merely make use of one or two correlations. In this paper, we propose a novel graph neural network model, namely LAGNN, which models five different correlations in crowdsourced annotation tasks by utilizing deep graph neural networks with convolution operations and derives a high label aggregation performance. Utilizing the group of high quality workers through labeling similarity, LAGNN can efficiently revise the preference among workers. Moreover, by injecting a little ground truth in its training stage, the label aggregation performance of LAGNN can be further significantly improved. We evaluate LAGNN on a large number of simulated datasets generated through varying six degrees of freedom and on eight real-world crowdsourcing datasets in both supervised and unsupervised (agnostic) modes. Experiments on data leakage is also contained. Experimental results consistently show that the proposed LAGNN significantly outperforms six state-of-the-art models in terms of label aggregation accuracy.

3.
Comput Intell Neurosci ; 2023: 3756102, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36776618

RESUMO

With the development of artificial intelligence (AI) in the field of drug design and discovery, learning informative representations of molecules is becoming crucial for those AI-driven tasks. In recent years, the graph neural networks (GNNs) have emerged as a preferred choice of deep learning architecture and have been successfully applied to molecular representation learning (MRL). Up-to-date MRL methods directly apply the message passing mechanism on the atom-level attributes (i.e., atoms and bonds) of molecules. However, they neglect latent yet significant hyperstructured knowledge, such as the information of pharmacophore or functional class. Hence, in this paper, we propose Hyper-Mol, a new MRL framework that applies GNNs to encode hypergraph structures of molecules via fingerprint-based features. Hyper-Mol explores the hyperstructured knowledge and the latent relationships of the fingerprint substructures from a hypergraph perspective. The molecular hypergraph generation algorithm is designed to depict the hyperstructured information with the physical and chemical characteristics of molecules. Thus, the fingerprint-level message passing process can encode both the intra-structured and inter-structured information of fingerprint substructures according to the molecular hypergraphs. We evaluate Hyper-Mol on molecular property prediction tasks, and the experimental results on real-world benchmarks show that Hyper-Mol can learn comprehensive hyperstructured knowledge of molecules and is superior to the state-of-the-art baselines.


Assuntos
Algoritmos , Inteligência Artificial , Benchmarking , Conhecimento , Redes Neurais de Computação
4.
Sensors (Basel) ; 22(24)2022 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-36560342

RESUMO

Intelligent mechanical systems are a focused area nowadays. One of the requirements of intelligent mechanical systems is to achieve intelligent fault diagnosis through the real-time acquisition and analysis of data from various sensors installed on mechanical components. In this paper, a new fault diagnosis method is proposed to solve the problems of difficulty in integrating the fault diagnosis algorithm and locating fault parts due to the complexity of modern mechanical systems. The complexity of modern industrial intelligent systems is due to the fact that the systems are composed of multiple components and there are various connections between them. Common fault diagnosis is to design specialized fault identification algorithms for the physical characteristics of each component, and the integration of different algorithms is a major challenge for system performance. Therefore, this paper investigates a general algorithm for the fault diagnosis of complex systems using the timing characteristics of sensors and transfer entropy. The fault diagnosis algorithm is based on the prediction of multi-dimensional long time series using Autoformer, and fault identification is performed based on the deviation of the predicted value from the actual value. After fault identification, a root cause analysis method of faults based on transfer entropy is proposed. The method can locate the component where the fault occurs more accurately based on the analysis of the cause-effect relationship of each component and help maintenance personnel to troubleshoot the fault.


Assuntos
Algoritmos , Indústrias , Fatores de Tempo , Entropia , Inteligência
5.
Healthcare (Basel) ; 9(2)2021 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-33672991

RESUMO

Blockchain technology is the most trusted all-in-one cryptosystem that provides a framework for securing transactions over networks due to its irreversibility and immutability characteristics. Blockchain network, as a decentralized infrastructure, has drawn the attention of various startups, administrators, and developers. This system preserves transactions from tampering and provides a tracking tool for tracing past network operations. A personal health record (PHR) system permits patients to control and share data concerning their health conditions by particular peoples. In the case of an emergency, the patient is unable to approve the emergency staff access to the PHR. Furthermore, a history record management system of the patient's PHR is required, which exhibits hugely private personal data (e.g., modification date, name of user, last health condition, etc.). In this paper, we suggest a healthcare management framework that employs blockchain technology to provide a tamper protection application by considering safe policies. These policies involve identifying extensible access control, auditing, and tamper resistance in an emergency scenario. Our experiments demonstrated that the proposed framework affords superior performance compared to the state-of-the-art healthcare systems concerning accessibility, privacy, emergency access control, and data auditing.

6.
Entropy (Basel) ; 21(4)2019 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33267069

RESUMO

Modern text hiding is an intelligent programming technique which embeds a secret message/watermark into a cover text message/file in a hidden way to protect confidential information. Recently, text hiding in the form of watermarking and steganography has found broad applications in, for instance, covert communication, copyright protection, content authentication, etc. In contrast to text hiding, text steganalysis is the process and science of identifying whether a given carrier text file/message has hidden information in it, and, if possible, extracting/detecting the embedded hidden information. This paper presents an overview of state of the art of the text hiding area, and provides a comparative analysis of recent techniques, especially those focused on marking structural characteristics of digital text message/file to hide secret bits. Also, we discuss different types of attacks and their effects to highlight the pros and cons of the recently introduced approaches. Finally, we recommend some directions and guidelines for future works.

7.
IEEE Trans Nanobioscience ; 14(8): 882-93, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26529772

RESUMO

Protein-protein interaction (PPI) plays crucial roles in the performance of various biological processes. A variety of methods are dedicated to identify whether proteins have interaction residues, but it is often more crucial to recognize each amino acid. In practical applications, the stability of a prediction model is as important as its accuracy. However, random sampling, which is widely used in previous prediction models, often brings large difference between each training model. In this paper, a Predictor of protein-protein interaction sites based on Extremely-randomized Trees (PETs) is proposed to improve the prediction accuracy while maintaining the prediction stability. In PETs, a cluster-based sampling strategy is proposed to ensure the model stability: first, the training dataset is divided into subsets using specific features; second, the subsets are clustered using K-means; and finally the samples are selected from each cluster. Using the proposed sampling strategy, samples which have different types of significant features could be selected independently from different clusters. The evaluation shows that PETs is able to achieve better accuracy while maintaining a good stability. The source code and toolkit are available at https://github.com/BinXia/PETs.


Assuntos
Árvores de Decisões , Mapeamento de Interação de Proteínas/métodos , Proteínas/química , Proteínas/metabolismo , Análise de Sequência de Proteína/métodos , Bases de Dados de Proteínas
8.
IEEE Trans Nanobioscience ; 14(1): 45-58, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25730499

RESUMO

We are facing an era with annotated biological data rapidly and continuously generated. How to effectively incorporate new annotated data into the learning step is crucial for enhancing the performance of a bioinformatics prediction model. Although machine-learning-based methods have been extensively used for dealing with various biological problems, existing approaches usually train static prediction models based on fixed training datasets. The static approaches are found having several disadvantages such as low scalability and impractical when training dataset is huge. In view of this, we propose a dynamic learning framework for constructing query-driven prediction models. The key difference between the proposed framework and the existing approaches is that the training set for the machine learning algorithm of the proposed framework is dynamically generated according to the query input, as opposed to training a general model regardless of queries in traditional static methods. Accordingly, a query-driven predictor based on the smaller set of data specifically selected from the entire annotated base dataset will be applied on the query. The new way for constructing the dynamic model enables us capable of updating the annotated base dataset flexibly and using the most relevant core subset as the training set makes the constructed model having better generalization ability on the query, showing "part could be better than all" phenomenon. According to the new framework, we have implemented a dynamic protein-ligand binding sites predictor called OSML (On-site model for ligand binding sites prediction). Computer experiments on 10 different ligand types of three hierarchically organized levels show that OSML outperforms most existing predictors. The results indicate that the current dynamic framework is a promising future direction for bridging the gap between the rapidly accumulated annotated biological data and the effective machine-learning-based predictors. OSML web server and datasets are freely available at: http://www.csbio.sjtu.edu.cn/bioinf/OSML/ for academic use.


Assuntos
Aprendizado de Máquina , Modelos Biológicos , Proteínas/química , Sítios de Ligação , Bases de Dados de Proteínas , Ligantes , Nucleotídeos/química , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...