Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomedicines ; 10(3)2022 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-35327329

RESUMO

In recent years, the emerging technology of cold atmospheric pressure plasma (CAP) has grown rapidly along with the many medical applications of cold plasma (e.g., cancer, skin disease, tissue repair, etc.). Plasma-activated liquids (e.g., culture media, water, or normal saline, previously exposed to plasma) are being studied as cancer treatments, and due to their advantages, many researchers prefer plasma-activated liquids as an alternative to CAP in the treatment of cancer. In this study, we showed that plasma-activated-saline (PAS) treatment significantly inhibited tumor growth, as compared with saline, in melanoma, and a low-pH environment had little effect on tumor growth in vivo. In addition, based on an ultra-high-performance liquid tandem chromatography-quadrupole time-of-flight mass spectrometry (UHPLC-QTOF-MS) analysis of tumor cell metabolism, the glycerophospholipid metabolic pathway was the most susceptible metabolic pathway to PAS treatment in melanoma in vitro and in vivo. Furthermore, PAS also inhibited cell proliferation in vivo in oral tongue squamous-cell cancer and non-small-cell lung cancer. There were few toxic side effects in the three animal models, and the treatment was deemed safe to use. In the future, plasma-activated liquids may serve as a potential therapeutic approach in the treatment of cancer.

2.
J Invest Dermatol ; 141(11): 2710-2719.e6, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34029575

RESUMO

Vitiligo shows insufficient response to current therapies largely owing to T-lymphocyte dysfunction, abnormal inflammatory activation, and excessive oxidative stress in lesions. Cold atmospheric plasma (CAP) possesses pleiotropic antioxidant and anti-inflammatory properties and may offer an improvement to current treatment options. In this study, the efficacy and safety of CAP were investigated in a mouse model of vitiligo and a randomized and controlled trial of patients with active focal vitiligo. Skin biopsies showed that topical treatment of vitiligo-like lesions on mouse dorsal skin by CAP restored the distribution of melanin. In addition, CAP treatment reduced the infiltration of CD11c+ dendritic cells, CD3+ T cells, and CD8+ T cells; inhibited the release of CXCL10 and cytokine IFN-γ; and enhanced cellular resistance to oxidative stress and excessive immune response by enhancing the expression of the transcription factor NRF2 and attenuating the activity of inducible nitric oxide synthase. In a randomized and controlled trial, CAP treatment achieved partial and complete repigmentation in 80% and 20% of vitiligo lesions, respectively, without hyperpigmentation in surrounding areas or other adverse events during the treatment period and its follow-up period. In conclusion, CAP offers a promising option for the management of vitiligo.


Assuntos
Hidrogéis/uso terapêutico , Gases em Plasma/uso terapêutico , Vitiligo/terapia , Adolescente , Adulto , Idoso , Animais , Linfócitos T CD8-Positivos/imunologia , Quimiocina CXCL10/análise , Criança , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Óxido Nítrico Sintase Tipo II/fisiologia , Estresse Oxidativo , Vitiligo/imunologia , Vitiligo/metabolismo , Vitiligo/patologia , Adulto Jovem
3.
Microorganisms ; 8(7)2020 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-32708347

RESUMO

Cold atmospheric plasma (CAP) has been widely used in biomedicine during the last two decades. While direct plasma treatment has been reported to promote wound healing, its application can be uneven and inconvenient. In this study, we first activated water with a portable dielectric barrier discharge plasma device and evaluated the inactivation effect of plasma-activated water (PAW) on several kinds of bacteria that commonly infect wounds. The results show that PAW can effectively inactivate these bacteria. Then, we activated tap water and examined the efficacy of PAW on wound healing in a mouse model of full-thickness skin wounds. We found that wound healing in mice treated with PAW was significantly faster compared with the control group. Histological analysis of the skin tissue of mice wounds showed a significant reduction in the number of inflammatory cells in the PAW treatment group. To identify the possible mechanism by which PAW promotes wound healing, we analyzed changes in the profiles of wound bacteria after PAW treatment. The results show that PAW can significantly reduce the abundance of wound bacteria in the treatment group. The results of biochemical blood tests and histological analysis of major internal organs in the mice show that PAW had no obvious side effects. Taken together, these results indicate that PAW may be a new and effective method for promoting wound healing without side effects.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...