Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Ecotoxicol Environ Saf ; 262: 115161, 2023 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-37356398

RESUMO

Aflatoxin B1 (AFB1) is the most toxic mycotoxin contaminant, which is widely present in crops and poses a major safety hazard to animal and human health. To alleviate the cytotoxic effects of AFB1 on the intestine, we tested the protective effects of porcine ß-defensin-2 (pBD-2). Results demonstrated that pBD-2 inhibited oxidative stress induced by AFB1 via decreasing the levels of ROS and enhancing the expression of antioxidant factors SOD-2 and NQO-1. In addition, pBD-2 attenuated AFB1-induced intestinal porcine epithelial cell line-J2 (IPEC-J2) injury through blocking mitochondria-mediated apoptosis. In vivo, pBD-2 treatment restored the intestinal mucosal structure and reduced the expression levels of apoptosis factors caspase-3 and Bax/Bcl-2. In conclusion, these results indicated that pBD-2 can alleviate AFB1-induced intestinal mucosal injury by inhibiting oxidative stress and mitochondria-mediated apoptosis. This study provides an effective strategy in developing pBD-2 as green feed additive to prevent AFB1 damage to animals.

2.
Int J Biol Macromol ; 233: 123599, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36773866

RESUMO

To prompt the application of the chitosan (CS)-Aspergillus oryzae lipase (AOL) complex in the construction of novel biphasic catalysis medium, its Pickering emulsion stabilization ability as well as adsorption behavior in the oil-water interface were investigated and the stability of resultant emulsion was evaluated. The results indicated that the CS-AOL complex assembled in mass ratio 1:5 was an effective Pickering stabilizer and up to 90 % AOL could be retained in the emulsion interface. Quartz crystal microbalance with dissipation monitoring suggested that the CS-AOL complex spontaneously absorbed to oil-water interface; absorption dynamics analysis revealed that the adsorption was driven by diffusion accompanied by rapid structural rearrangement; while interfacial dilatational rheology demonstrated the formation of an elastic film in the oil-water interface. The Pickering emulsions were pseudoplastic and that in oil fraction 0.6 exhibited the elastic behavior in contrast to the viscous behavior in oil fractions 0.2 and 0.4. The Pickering emulsion exhibited excellent stability against storage for up to 28 d, pHs 2.0-12.0, heating at 25-90 °C, and up to 500 mmol/L NaCl, and the corresponding interfacial AOL retentions exceeded 80 % during exposure to these conditions. Hence, the CS-AOL complex could be used as a stabilizer to construct Pickering emulsion-based biphasic catalysis systems.


Assuntos
Aspergillus oryzae , Quitosana , Quitosana/química , Emulsões/química , Adsorção , Excipientes , Água/química , Tamanho da Partícula
3.
Respir Res ; 23(1): 290, 2022 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-36274148

RESUMO

BACKGROUND: Plexiform lesions, which have a dynamic appearance in structure and cellular composition, are the histological hallmark of severe pulmonary arterial hypertension in humans. The pathogenesis of the lesion development remains largely unknown, although it may be related to local inflammation and dysfunction in early progenitor endothelial cells (eEPCs). We tested the hypothesis that eEPCs contribute to the development of plexiform lesions by differentiating into macrophages in the setting of chronic inflammation. METHODS: The eEPC markers CD133 and VEGFR-2, macrophage lineage marker mannose receptor C-type 1 (MRC1), TNFα and nuclear factor erythroid 2-related factor 2 (Nrf2) in plexiform lesions in a broiler model were determined by immunohistochemistry. eEPCs derived from peripheral blood mononuclear cells were exposed to TNFα, and macrophage differentiation and angiogenic capacity of the cells were evaluated by phagocytotic and Matrigel plug assays, respectively. The role of Nrf2 in eEPC-to-macrophage transition as well as in MRC1 expression was also evaluated. Intratracheal installation of TNFα was conducted to determine the effect of local inflammation on the formation of plexiform lesions. RESULTS: Cells composed of the early lesions have a typical eEPC phenotype whereas those in more mature lesions display molecular and morphological characteristics of macrophages. Increased TNFα production in plexiform lesions was observed with lesion progression. In vitro studies showed that chronic TNFα challenge directed eEPCs to macrophage differentiation accompanied by hyperactivation of Nrf2, a stress-responsive transcription factor. Nrf2 activation (Keap1 knockdown) caused a marked downregulation in CD133 but upregulation in MRC1 mRNA. Dual luciferase reporter assay demonstrated that Nrf2 binds to the promoter of MRC1 to trigger its expression. In good agreement with the in vitro observation, TNFα exposure induced macrophage differentiation of eEPCs in Matrigel plugs, resulting in reduced neovascularization of the plugs. Intratracheal installation of TNFα resulted in a significant increase in plexiform lesion density. CONCLUSIONS: This work provides evidence suggesting that macrophage differentiation of eEPCs resulting from chronic inflammatory stimulation contributes to the development of plexiform lesions. Given the key role of Nrf2 in the phenotypic switching of eEPCs to macrophages, targeting this molecular might be beneficial for intervention of plexiform lesions.


Assuntos
Células Progenitoras Endoteliais , Hipertensão Pulmonar , Animais , Humanos , Células Progenitoras Endoteliais/fisiologia , Receptor 2 de Fatores de Crescimento do Endotélio Vascular , Fator de Necrose Tumoral alfa , Fator 2 Relacionado a NF-E2 , Proteína 1 Associada a ECH Semelhante a Kelch , Leucócitos Mononucleares , Galinhas , Inflamação , Macrófagos , RNA Mensageiro
4.
J Alzheimers Dis ; 89(4): 1315-1322, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36031898

RESUMO

BACKGROUND: Until now, both cross-sectional and longitudinal studies have identified controversial findings about the association between daytime napping and Alzheimer's disease (AD) or cognitive decline. Therefore, it remains unclear about the causal association between daytime napping and AD or cognitive decline. OBJECTIVE: We aim to investigate the causal association between daytime napping and AD. METHODS: Here, we conduct a bidirectional Mendelian randomization (MR) analysis to investigate the causal association between daytime napping and AD using large-scale GWAS datasets from daytime napping including 452,633 individuals of European ancestry and AD including 35,274 AD and 59,163 controls of European ancestry. A total of five MR methods are selected including inverse-variance weighted (IVW), weighted median, MR-Egger, MR-PRESSO, and contamination mixture method. RESULTS: MR analysis highlights significant causal association of AD with daytime napping using IVW (beta = -0.006, 95% CI [-0.009, -0.002], p = 2.00E-03), but no significant causal association of daytime napping with AD using IVW (OR = 0.76, 95% CI 0.53-1.10, p = 1.40E-01). CONCLUSION: Our bidirectional MR analysis demonstrates the causal effect of AD on daytime napping. However, there is no causal effect of daytime napping on AD. Our current findings are consistent with recent evidence from other MR studies that highlight little evidence supporting a causal effect of sleep traits on AD and support the causal effect of AD on sleep traits.


Assuntos
Doença de Alzheimer , Análise da Randomização Mendeliana , Doença de Alzheimer/genética , Estudos Transversais , Estudo de Associação Genômica Ampla , Humanos , Análise da Randomização Mendeliana/métodos , Polimorfismo de Nucleotídeo Único , Sono/genética
5.
Carbohydr Polym ; 253: 117200, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33278973

RESUMO

Chitosan/g-C3N4/TiO2 (CS/CNT) nanofibers were fabricated by electrospinning technique for Cr(VI) removal through the adsorption and photocatalytic processes. The effects of crucial factors in the adsorption process including contact time (0-1440 min), pH (1-7), initial concentration of Cr(VI) (20-800 mg/L) were investigated. The photocatalytic experiment was executed in a photochemical reactor with an 800 W xenon lamp to simulate visible light. In adsorption process, at pH = 2, the adsorption capacities of chitosan (CS) nanofibers, CS/CNT10:1 (CS : g-C3N4/TiO2 = 10:1) nanofibers and CS/CNT5:1 nanofibers were 20.8, 165.3 and 68.9 mg/g, respectively, suggesting the addition of g-C3N4/TiO2 (CNT) could notably enhance the acid resistance of CS and widen its practical application. Under visible-light irradiation, the removal efficiency of Cr(VI) using CS/CNT nanofibers was appreciably improved, which was about 50 % higher than that of pure adsorption, indicating that the CS/CNT nanofibers exhibited the effective synergistic effect of adsorption and photocatalysis.

6.
J Phys Chem Lett ; 11(8): 3051-3057, 2020 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-32223246

RESUMO

The dissolution of transition-metal (TM) cations into a liquid electrolyte from cathode material, such as Mn ion dissolution from LiMn2O4 (LMO), is detrimental to the cycling performance of Li-ion batteries (LIBs). Though much attention has been paid to this issue, the behavior of Mn dissolution has not been clearly revealed. In this work, by using a refined in situ ultraviolet-visible (UV-vis) spectroscopy technique, we monitored the concentration changes of dissolved Mn ions in liquid electrolyte from LMO at different state of charge (SOC), confirming the maximum dissolution concentration and rate at 4.3 V charged state and Mn2+ as the main species in the electrolyte. Through ab initio molecular dynamics (AIMD) simulations, we revealed that the Mn dissolution process is highly related to surface structure evolution, solvent decomposition, and lithium salt. These results will contribute to understanding TM dissolution mechanisms at working conditions as well as the design of stable cathodes.

7.
Nanoscale Res Lett ; 14(1): 215, 2019 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-31240411

RESUMO

CuS nanoflowers were loaded on anatase TiO2/polyvinylidene fluoride (PVDF) fibers by hydrothermal treated electrospun tetrabutyl orthotitanate (TBOT)/PVDF fibers at low temperature. The results indicated that the amount of copper source and sulfur source determined the crystallization and morphology of the resultant products. It was found that the composite of CuS narrowed the band gap energy of TiO2 and enhanced the separation efficiency of the photogenerated electron-hole pairs of TiO2. The photocatalytic reaction rate of CuS/TiO2/PVDF fibers to rhodamine B was 3 times higher than that of TiO2/PVDF fibers under visible light irradiation. Besides, owing to the preparation process was carried out at low temperature, the flexibility of CuS/TiO2/PVDF fibers was ensured. In addition, the self-cleaning performance of the dye droplets on the resultant product surface was demonstrated under visible light. Meanwhile, the resultant product can automatically remove dust on the surface of the material under the rolling condition of droplets due to its hydrophobicity. Therefore, the as-prepared CuS/TiO2/PVDF fibers can not only degrade the contaminated compounds, but also depress the maintenance cost owing to its self-cleaning performance, which means a very practical application prospect.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA