Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Res ; 227: 115710, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-36933634

RESUMO

Vegetation restoration projects can not only improve water quality by absorbing and transferring pollutants and nutrients from non-vegetation sources, but also protect biodiversity by providing habitat for biological growth. However, the mechanism of the protistan and bacterial assembly processes in the vegetation restoration project were rarely explored. To address this, based on 18 S rRNA and 16 S rRNA high-throughput sequencing, we investigated the mechanism of protistan and bacterial community assembly processes, environmental conditions, and microbial interactions in the rivers with (out) vegetation restoration. The results indicated that the deterministic process dominated the protistan and bacterial community assembly (94.29% and 92.38%), influenced by biotic and abiotic factors. For biotic factors, microbial network connectivity was higher in the vegetation zone (average degree = 20.34) than in the bare zone (average degree = 11.00). For abiotic factors, the concentration of dissolved organic carbon ([DOC]) was the most important environmental factor affecting the microbial community composition. [DOC] was lower significantly in vegetation zone (18.65 ± 6.34 mg/L) than in the bare zone (28.22 ± 4.82 mg/L). In overlying water, vegetation restoration upregulated the protein-like fluorescence components (C1 and C2) by 1.26 and 1.01-folds and downregulated the terrestrial humic-like fluorescence components (C3 and C4) by 0.54 and 0.55-folds, respectively. The different DOM components guided bacteria and protists to select different interactive relationships. The protein-like DOM components led to bacterial competition, whereas the humus-like DOM components resulted in protistan competition. Finally, the structural equation model was established to explain that DOM components can affect protistan and bacterial diversity by providing substrates, facilitating microbial interactions, and promoting nutrient input. In general, our study provides insights into the responses of vegetation restored ecosystems to the dynamics and interactives in the anthropogenically influenced river and evaluates the ecological restoration performance of vegetation restoration from a molecular biology perspective.


Assuntos
Matéria Orgânica Dissolvida , Microbiota , Rios/química , Qualidade da Água , Bactérias/genética , Espectrometria de Fluorescência
2.
Se Pu ; 41(3): 241-249, 2023 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-36861207

RESUMO

The widespread and frequent use of antibiotics to treat diseases or encourage animal growth has resulted in their persistence and accumulation in water, soil, and sediments. As a typical emerging pollutant in the environment, antibiotics have become an important research focus in recent years. Antibiotics are commonly found at trace levels in water environments. Unfortunately, the determination of various types of antibiotics, all of which exhibit different physicochemical properties, remains a challenging endeavor. Thus, developing pretreatment and analytical techniques to achieve the rapid, sensitive, and accurate analysis of these emerging contaminants in various water samples is an essential undertaking.In this paper, a solid phase extraction-high performance liquid chromatography-tandem mass spectrometry (SPE-HPLC-MS/MS) method for the simultaneous determination of 22 antibiotics including 4 penicillins, 12 quinolones and 6 macrolides in environmental water samples was developed. Based on the characteristics of the screened antibiotics and sample matrix, the pretreatment method was optimized, focusing on the SPE column, pH of the water sample, and amount of ethylene diamine tetra-acetic acid disodium (Na2EDTA) added to the water sample. Prior to extraction, a 200 mL water sample was added with 0.5 g of Na2EDTA and pH-adjusted to 3 using sulfuric acid or sodium hydroxide solution. Water sample enrichment and purification were achieved using an HLB column. HPLC separation was carried out on a C18 column (100 mm×2.1 mm, 3.5 µm) via gradient elution with a mobile phase composed of acetonitrile and 0.15% (v/v) formic acid aqueous solution. Qualitative and quantitative analyses were performed on a triple quadrupole mass spectrometer in multiple reaction monitoring mode using an electrospray ionization source. The results showed correlation coefficients greater than 0.995, indicating good linear relationships. The method detection limits (MDLs) and limits of quantification (LOQs) were in the ranges of 2.3-10.7 ng/L and 9.2-42.8 ng/L, respectively. The recoveries of target compounds in surface water at three spiked levels ranged from 61.2% to 157%, with relative standard deviations (RSDs) of 1.0%-21.9%. The recoveries of target compounds in wastewater at three spiked levels were 50.1%-129%, with RSDs of 1.2%-16.9%. The method was successfully applied to the simultaneous determination of antibiotics in reservoir water, surface water, sewage treatment plant outfall, and livestock wastewater. Most of the antibiotics were detected in watershed and livestock wastewater. Lincomycin was detected in 10 surface water samples, with a detection frequency of 90%, and ofloxacin showed the highest contents (127 ng/L) in livestock wastewater. Therefore, the present method exhibits excellent performance in terms of MDLs and recoveries compared with previously reported methods. The developed method presents the advantages of small water sample volumes, wide applicability, and fast analysis times; thus, it can be considered a rapid, efficient, and sensitive analytical method with excellent potential for monitoring emergency environmental pollution. The method could also provide a reliable reference for formulating antibiotic residue standards. The results provide strong support for and an improved understanding of the environmental occurrence, treatment, and control of emerging pollutants.


Assuntos
Antibacterianos , Poluentes Ambientais , Animais , Cromatografia Líquida de Alta Pressão , Espectrometria de Massas em Tandem , Ácido Edético , Águas Residuárias
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...