Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 17(9)2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38730888

RESUMO

In this study, a novel fabrication method was used to synthesize phenolic resin/phosphate hybrid coatings using aluminum dihydrogen phosphate (Al(H2PO4)3, hereafter denoted as Al), SC101 silica sol (Si) as the primary film-forming agent, and phenolic resin (PF) as the organic matrix. This approach culminated in the formation of Al+Si+PF organo-inorganic hybrid coatings. Fourier-transform infrared spectroscopy (FT-IR) and X-ray photoelectron spectroscopy (XPS) results confirmed the successful integration of hybrid structures within these coatings. The crystalline structure of the coatings post-cured at various temperatures was elucidated using X-ray diffraction (XRD). Additionally, the surface and cross-sectional morphologies were meticulously analyzed using scanning electron microscopy (SEM), offering insights into the microstructural properties of the coatings. The coatings' porosities under diverse thermal and temporal regimes were quantitatively evaluated using advanced image processing techniques, revealing a significant reduction in porosity to a minimum of 5.88% following a thermal oxidation process at 600 °C for 10 h. The antioxidant efficacy of the phosphate coatings was rigorously assessed through cyclic oxidation tests, which revealed their outstanding performance. Specifically, at 300 °C across 300 h of cyclic oxidation, the weight losses recorded for phosphate varnish and the phenolic resin-infused phosphate coatings were 0.15 mg·cm-2 and 0.09 mg·cm-2, respectively. Furthermore, at 600 °C and over an identical period, the weight reduction was noted as 0.21 mg·cm-2 for phosphate varnish and 0.085 mg·cm-2 for the hybrid coatings, thereby substantiating the superior antioxidation capabilities of the phenolic resin hybrid coatings in comparison to the pure phosphate varnish.

2.
Materials (Basel) ; 17(10)2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38793402

RESUMO

This study investigates the corrosion behavior of Ni-Cr binary alloys, including Ni-10Cr, Ni-15Cr, Ni-20Cr, Ni-25Cr, and Ni-30Cr, in a NaCl-KCl-MgCl2 molten salt mixture through gravimetric analysis. Corrosion tests were conducted at 700 °C, with the maximum immersion time reaching up to 100 h. The corrosion rate was determined by measuring the mass loss of the specimens at various time intervals. Verifying corrosion rates by combining mass loss results with the determination of element dissolution in molten salts using Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES). Detailed examinations of the corrosion products and morphology were conducted using X-ray diffraction (XRD) and scanning electron microscopy (SEM). Micro-area elemental analysis on the corroded surfaces was performed using an energy dispersive spectrometer (EDS), and the elemental distribution across the corrosion cross-sections was mapped. The results indicate that alloys with lower Cr content exhibit superior corrosion resistance in the NaCl-KCl-MgCl2 molten salt under an argon atmosphere compared to those with higher Cr content; no corrosion products were retained on the surfaces of the lower Cr alloys (Ni-10Cr, Ni-15Cr). For the higher Cr alloys (Ni-20Cr, Ni-25Cr, Ni-30Cr), after 20 h of corrosion, a protective layer was observed in certain areas. The formation of a stable Cr2O3 layer in the initial stages of corrosion for high-Cr content alloys, which reacts with MgO in the molten salt to form a stable MgCr2O4 spinel structure, provides additional protection for the alloys. However, over time, even under argon protection, the MgCr2O4 protective layer gradually degrades due to chloride ion infiltration and chemical reactions at high temperatures. Further analysis revealed that chloride ions play a pivotal role in the corrosion process, not only facilitating the destruction of the Cr2O3 layer on the alloy surfaces but also possibly accelerating the corrosion of the metallic matrix through electrochemical reactions. In conclusion, the corrosion behavior of Ni-Cr alloys in the NaCl-KCl-MgCl2 molten salt environment is influenced by a combination of factors, including Cr content, chloride ion activity, and the formation and degradation of protective layers. This study not only provides new insights into the corrosion resistance of Ni-Cr alloys in high-temperature molten salt environments but also offers significant theoretical support for the design and optimization of corrosion-resistant alloy materials.

3.
Cell Rep Med ; 5(3): 101433, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38401547

RESUMO

Inclusion of defined quantities of the two major surface proteins of influenza virus, hemagglutinin (HA) and neuraminidase (NA), could benefit seasonal influenza vaccines. Recombinant HA and NA multimeric proteins derived from three influenza serotypes, H1N1, H3N2, and type B, are surface displayed on nanoliposomes co-loaded with immunostimulatory adjuvants, generating "hexaplex" particles that are used to immunize mice. Protective immune responses to hexaplex liposomes involve functional antibody elicitation against each included antigen, comparable to vaccination with monovalent antigen particles. When compared to contemporary recombinant or adjuvanted influenza virus vaccines, hexaplex liposomes perform favorably in many areas, including antibody production, T cell activation, protection from lethal virus challenge, and protection following passive sera transfer. Based on these results, hexaplex liposomes warrant further investigation as an adjuvanted recombinant influenza vaccine formulation.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Vacinas contra Influenza , Influenza Humana , Infecções por Orthomyxoviridae , Camundongos , Animais , Humanos , Hemaglutininas , Neuraminidase/genética , Vírus da Influenza A Subtipo H3N2 , Lipossomos , Adjuvantes Imunológicos , Vacinas Sintéticas
4.
Nat Nanotechnol ; 18(2): 193-204, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36424448

RESUMO

Activation of scramblases is one of the mechanisms that regulates the exposure of phosphatidylserine to the cell surface, a process that plays an important role in tumour immunosuppression. Here we show that chemotherapeutic agents induce overexpression of Xkr8, a scramblase activated during apoptosis, at the transcriptional level in cancer cells, both in vitro and in vivo. Based on this finding, we developed a nanocarrier for co-delivery of Xkr8 short interfering RNA and the FuOXP prodrug to tumours. Intravenous injection of our nanocarrier led to significant inhibition of tumour growth in colon and pancreatic cancer models along with increased antitumour immune response. Targeting Xkr8 in combination with chemotherapy may represent a novel strategy for the treatment of various types of cancers.


Assuntos
Nanopartículas , Neoplasias Pancreáticas , Humanos , RNA Interferente Pequeno/uso terapêutico , Apoptose , Membrana Celular/metabolismo , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/metabolismo , Linhagem Celular Tumoral , Proteínas de Membrana/metabolismo , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo
5.
Acta Biomater ; 137: 252-261, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34653696

RESUMO

The Ca2+ buffering capacity of mitochondria maintains the balance of cell physiological activities. The exogenous reactive oxygen species (ROS) can be used to break the balance, resulting in mitochondrial dysfunction and irreversible cell apoptosis. Herein, the CaCO3-based tumor microenvironment (TME) responsive nanoplatform (CaNPCAT+BSO@Ce6-PEG) was designed for oxygen/GSH depletion-boosted photodynamic therapy (PDT) and mitochondrial Ca2+-overloading synergistic therapy. In acidic TME, CaCO3 decomposed and released the cargos (catalase (CAT), buthionine sulfoximine (BSO), chlorin e6 (Ce6), and Ca2+). The tumor hypoxia and reductive microenvironment could be significantly reversed by CAT and BSO, which greatly enhanced the PDT efficacy. The generated 1O2 during PDT process not only directly killed cancer cells but also destroyed the Ca2+ buffering capacity, leading to the mitochondrial Ca2+-overloading. The increased Ca2+ concentration promoted the process of oxidative phosphorylation and inhibited the production of adenosine triphosphate (ATP), resulting in the acceleration of cell death. Under the joint action of enhanced PDT and mitochondrial Ca2+-overloading, the CaNPCAT+BSO@Ce6-PEG NPs showed remarkable synergistic effects in tumor inhibition without any side effects. STATEMENT OF SIGNIFICANCE: In the manuscript, a CaCO3-based nano-platform for tumor microenvironment response was designed. With the decomposition of CaNPCAT+BSO@Ce6-PEG NPs in the acidic tumor microenvironment, the released catalase (CAT) and buthionine sulfoximine (BSO) could relieve the tumor hypoxia and inhibit GSH production. Under 660 nm laser irradiation, the photodynamic effect was enhanced and caused apoptosis. Meanwhile, the Ca2+ buffering capacity was destroyed which led to the mitochondrial Ca2+-overloading. The synergistic effect of enhanced PDT and mitochondrial Ca2+-overloading made the CaNPCAT+BSO@Ce6-PEG NPs present remarkable antitumor performance.


Assuntos
Nanopartículas , Neoplasias , Fotoquimioterapia , Porfirinas , Linhagem Celular Tumoral , Glutationa/farmacologia , Humanos , Mitocôndrias , Neoplasias/tratamento farmacológico , Oxigênio/farmacologia , Fármacos Fotossensibilizantes/farmacologia , Porfirinas/farmacologia , Microambiente Tumoral
6.
Biomater Sci ; 8(21): 6093-6099, 2020 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-33001068

RESUMO

Subcutaneous abscesses caused by drug-resistant pathogens pose a serious challenge to human health. To overcome this problem, herein an acidity-responsive aggregated W/Mo-based polyoxometalate (POM) was developed for photothermal-enhanced chemodynamic antibacterial therapy in the second near-infrared (NIR) region. The POM can self-assemble into larger-sized aggregates with stronger absorption in the NIR region, making it remain in the acidic infected tissue. Furthermore, the hydrogen peroxide at the site of infection can be converted to a hydroxyl radical for chemodynamic therapy (CDT) and simultaneously the glutathione in organisms is consumed by the POM to further enhance the CDT effect. More importantly, under laser irradiation, the hyperthermia produced by the POM not only can kill drug-resistant Staphylococcus aureus, but also enhance the performance of CDT. Benefitting from the inflammatory retention and acidity-responsive photothermal-enhanced CDT properties, the POM exhibits an obvious therapeutic effect against drug-resistant bacterial infection without significant side effects under 1060 nm laser irradiation.


Assuntos
Hipertermia Induzida , Staphylococcus aureus Resistente à Meticilina , Antibacterianos , Humanos , Fototerapia , Compostos de Tungstênio
7.
Biomaterials ; 205: 1-10, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30889497

RESUMO

Developing new strategies to alleviate tumor hypoxia and enhance the therapeutic efficacy towards solid tumors is of great significance to tumor therapy. Herein, to overcome tumor hypoxia, specifically designed aza-BODIPY photosensitizer is co-loaded with anti-cancer drug (doxorubicin, DOX) onto the hydrangea-structured MnO2 nanoparticles, and a tumor microenvironment (TME) responsive degradable nanoplatform (MDSP NP) is established. MDSP NPs (∼54 nm), with near infrared absorption (∼853 nm), can be rapidly dissociated to generate oxygen in response to TME, whereby improving tumor hypoxia, in favor of effective drugs release and enhanced chemo/photodynamic therapy. Revealed by in vivo fluorescence and photoaccoustic imaging, MDSP NPs are preferential accumulated at tumor site. Confirmed by photothermal imaging, MDSP NPs can induce hyperthermia to relieve hypoxia, promote the uptake of therapeutic nanoparticles, and further reduce the resistance and improve the therapeutic efficiency. As a result, a remarkable synergistic tumor chemo/photodynamic/photothermal therapy with hydrangea-structured TME responsive oxygen-self-generation nanoplatform is confirmed by both in vitro and in vivo studies, testifying its great potential for hypoxic tumor treatment in clinical application.


Assuntos
Hydrangea/química , Imagem Multimodal , Nanopartículas/química , Neoplasias/diagnóstico , Neoplasias/terapia , Hipóxia Tumoral , Microambiente Tumoral , Animais , Compostos de Boro/química , Sobrevivência Celular/efeitos dos fármacos , Células HCT116 , Humanos , Peróxido de Hidrogênio/toxicidade , Camundongos Endogâmicos BALB C , Camundongos Nus , Nanopartículas/ultraestrutura , Fármacos Fotossensibilizantes/uso terapêutico , Espectrofotometria Ultravioleta , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...