Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Small ; 20(5): e2303778, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37752783

RESUMO

Cellulose nanocrystal (CNC) is a renewable resource derived from lignocellulosic materials, known for its optical permeability, biocompatibility, and unique self-assembly properties. Recent years have seen great progresses in cellulose nanocrystal-based chiral photonic materials. However, due to its inherent brittleness, cellulose nanocrystal shows limitations in the fields of flexible materials, optical sensors and food freshness testing. In order to solve the above limitations, attempts have been made to improve the flexibility of cellulose nanocrystal materials without destroying their structural color. Despite these progresses, a systematic review on them is lacking. This review aims to fill this gap by providing an overview of the main strategies and the latest research findings on the flexibilization of cellulose nanocrystal-based chiral nematic film materials (FCNM). Specifically, typical substances and methods used for their preparation are summarized. Moreover, different kinds of cellulose nanocrystal-based composites are compared in terms of flexibility. Finally, potential applications and future challenges of flexible cellulose nanocrystal-based chiral nematic materials are discussed, inspiring further research in this field.

2.
Biomacromolecules ; 24(11): 4605-4621, 2023 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-37917193

RESUMO

With the emergence of challenges in the environmental degradation and resource scarcity fields, the research of biobased self-healing polyurethane (BSPU) has become a prevailing trend in the technology of the polyurethane industry and a promising direction for developing biomass resources. Here, the production of BSPU from lignocellulose, vegetable oil, chitosan, collagen, and coumarin is classified, and the principles of designing polyurethane based on compelling examples using the latest methods and current research are summarized. Moreover, the impact of biomass materials on self-healing and mechanical properties, as well as the tailored performance method, are presented in detail. Finally, the applications of BSPU in biomedicine, sensors, coatings, etc. are also summarized, and the possible challenges and development prospects are explored to helpfully make progress in the development of BSPU. These findings demonstrate valuable references and practical significance for future BSPU research.


Assuntos
Quitosana , Poliuretanos , Biomassa
3.
Int J Biol Macromol ; 242(Pt 2): 124943, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37210051

RESUMO

Biodegradable polylactide/poly(butylene adipate-co-terephthalate) (PLA/PBAT) blends have been widely utilized as packaging materials. However, it is urgent to develop a biocompatibilizer to improve the interfacial interaction of the biodegradable immiscible polymer blends in practice. In this paper, a novel type of hyperbranched polysiloxane (HBPSi) with terminal methoxy groups was synthesized and then utilized to functionalize lignin through a hydrosilation reaction. The HBPSi modified lignin (lignin@HBPSi) was incorporated into immiscible PLA/PBAT blends to serve as a biocompatibilizer. The lignin@HBPSi was uniformly dispersed in the PLA/PBAT matrix with improved interfacial compatibility. Dynamic rheological results revealed that the addition of lignin@HBPSi reduced the complex viscosity, improving the processing ability of the PLA/PBAT composite. The PLA/PBAT composite containing 5 wt% lignin@HBPSi had a superior toughness with an elongation at break of 300.2 % and a slight enhancement in tensile stress (34.47 MPa). In addition, the presence of lignin@HBPSi contributed to blocking ultraviolet rays in the full ultraviolet band. This work provides a feasible way to develop highly ductile PLA/PBAT/lignin composites with good UV-shielding properties for the packaging applications.


Assuntos
Lignina , Siloxanas , Raios Ultravioleta , Poliésteres , Polímeros , Adipatos
4.
ACS Nano ; 17(6): 5653-5662, 2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-36897210

RESUMO

Cellulose nanocrystal (CNC)-based chiral nematic structure is widely used in stimulus response and sensing. A popular area of research is enhancing the mechanical characteristics and environmental adaptability of chiral nematic materials. In this paper, a flexible photonic film with self-healing ability (FPFS) was prepared by combining waterborne polyurethane containing dynamic covalent disulfide bonds (SSWPU) with CNC. The results found that the FPFS showed excellent toughness under the action of stretching, bending, twisting, and folding. The FPFS exhibited an amazing self-healing efficiency, which can be self-healed within 2 h at room temperature. Moreover, the FPFS could respond immediately and produce reversible color change when it was soaked in typical solvents. In addition, when ethanol was used as ink to paint on the FPFS, a visible pattern only under polarized light was formed. This study offers fresh perspectives in the areas of self-healing, biological anticounterfeiting, solvent response, and flexible photonic materials.

5.
Adv Colloid Interface Sci ; 303: 102644, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35313189

RESUMO

Even though polyurethane (PU) has been widely applied, its superhydrophobicity is inadequate for certain applications. As such, the development of superhydrophobic polyurethane (SHPU) has recently attracted significant attention, with numerous motivating reports in recent years. However, a comprehensive review that summarizes these state-of-the-art developments remains lacking. Thus, this review aims to fill up this gap by reviewing the recent preparation methods for SHPU based on superhydrophobic theories and principles. Three main types of methods used in promoting the hydrophobicity of PU are emphasized in this review; (1) incorporation of silicide or fluoride to lower the surface energy, (2) creation of micro/nano-scale rough surfaces by electrospinning or grafting of nanoparticles, and (3) integrating the earlier two methods to develop a synergistic approach. Furthermore, this review also discussed the various applications of SHPU in oil spill treatment, protective coating, self-healing materials and sensors.


Assuntos
Nanopartículas , Poliuretanos , Interações Hidrofóbicas e Hidrofílicas , Nanopartículas/química , Propriedades de Superfície
6.
Adv Mater ; 34(17): e2107938, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34969155

RESUMO

Electrospinning is a significant micro/nanofiber processing technology and has been rapidly developing in the past 2 decades. It has several applications, including advanced sensing, intelligent manufacturing, and high-efficiency catalysis. Here, multifunctional protective membranes fabricated via electrospinning in terms of novel material design, construction of novel structures, and various protection requirements in different environments are reviewed. To achieve excellent comprehensive properties, such as, high water vapor transmission, high hydrostatic pressure, optimal mechanical property, and air permeability, combinations of novel materials containing nondegradable/degradable materials and functional structures inspired by nature have been investigated for decades. Currently, research is mainly focused on conventional protective membranes with multifunctional properties, such as, anti-UV, antibacterial, and electromagnetic-shielding functions. However, important aspects, such as, the properties of electrospun monofilaments, development of "green electrospinning solutions" with high solid content, and approaches for enhancing adhesion between hydrophilic and hydrophobic layers are not considered. Based on this systematic review, the development of electrospinning for protective membranes is discussed, the existing gaps in research are discussed, and solutions for the development of technology are proposed. This review will assist in promoting the diversified development of protective membranes and is of great significance for fabricating advanced materials for intelligent protection.


Assuntos
Nanofibras , Antibacterianos , Interações Hidrofóbicas e Hidrofílicas , Membranas Artificiais , Nanofibras/química
7.
Int J Biol Macromol ; 188: 323-332, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34375661

RESUMO

The demand for biodegradable and renewable UV-shielding materials is ever increasing due to the rising concern for the environment. In this paper, biobased lignin was functionalized by polyhedral oligomeric silsesquioxane (POSS) with an epoxy substituent. Then the POSS decorated lignin (lignin-POSS) was mixed with polylactide (PLA) to act as UV-shielding filler by melt compounding. The SEM observation revealed that the presence of POSS contributed to improving the homogeneous dispersion of lignin-POSS in the PLA matrix with good compatibility when the content of lignin-POSS was lower than 5 wt%. The synergistic effects of lignin and POSS endowed PLA composite films with a good balance of UV-shielding ability and transparency in the visible light region. With the addition of 5 wt% lignin-POSS, the PLA composite film absorbed almost all UV irradiation across the entire UV spectrum. In addition, the presence of lignin-POSS could serve as a nucleating agent to increase the degree of crystallinity of PLA. The dynamical rheological tests revealed that the lignin-POSSS reduced the complex viscosity and storage modulus of PLA composites, improving the flowability of PLA composites. This work presents a viable pathway to prepare biodegradable and renewable UV-shielding materials for potential packaging applications.


Assuntos
Plásticos Biodegradáveis/química , Lignina/química , Poliésteres/química , Lignina/ultraestrutura , Compostos de Organossilício/química , Raios Ultravioleta
8.
Adv Mater ; 33(32): e2101005, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34219279

RESUMO

Coronary artery disease is the "first killer" in the world, while the classical treatment for this disease is to implant stent. An ideal vascular stent should be nontoxic with self-expanding characteristics, quick expanding speed, and appropriate mechanical supporting property. However, no existing vascular stent covers all properties. Herein, a two-way shape-memory cellulose vascular stent, which can realize shape adjustments by mild solutions such as water and alcohol, is constructed. The shape-memory characteristics, mechanical properties, cell toxicity, and biocompatibility, are systemically investigated by ex vivo experiment as well as molecule simulation and theoretical modeling, revealing that the achieved bilayer two-way shape-memory films (BSMFs) can be used as an artificial vascular stent. In particular, this vascular stent made from BSMFs shows superb biocompatibility according to live/dead cell viability assays. Ex vivo experiments reveal that the novel vascular stent can support arteria coronaria sinistra, or the left main coronary artery, at the opening state while the cross-section of the vessel becomes two times larger than that of the initial state after implantation. Thus, it is believed that effective and scalable BSMFs can make meritorious fundamental contributions to biomaterials science and practical applications such as vascular stents.


Assuntos
Materiais Biocompatíveis/química , Solventes/química , Stents , Animais , Materiais Biocompatíveis/farmacologia , Temperatura Corporal , Sobrevivência Celular/efeitos dos fármacos , Celulose/química , Módulo de Elasticidade , Humanos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Artéria Pulmonar/patologia , Suínos
9.
Angew Chem Int Ed Engl ; 60(21): 12116-12123, 2021 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-33723915

RESUMO

Solid-state lithium metal batteries built with composite polymer electrolytes using cubic garnets as active fillers are particularly attractive owing to their high energy density, easy manufacturing and inherent safety. However, the uncontrollable formation of intractable contaminant on garnet surface usually aggravates poor interfacial contact with polymer matrix and deteriorates Li+ pathways. Here we report a rational designed intermolecular interaction in composite electrolytes that utilizing contaminants as reaction initiator to generate Li+ conducting ether oligomers, which further emerge as molecular cross-linkers between inorganic fillers and polymer matrix, creating dense and homogeneous interfacial Li+ immigration channels in the composite electrolytes. The delicate design results in a remarkable ionic conductivity of 1.43×10-3  S cm-1 and an unprecedented 1000 cycles with 90 % capacity retention at room temperature is achieved for the assembled solid-state batteries.

10.
ACS Appl Mater Interfaces ; 12(6): 7222-7231, 2020 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-31967446

RESUMO

All-solid-state lithium metal batteries are highly attractive because of their high energy density and inherent safety. However, it is still a great challenge to design the solid electrolytes with high ionic conductivity at room temperature and good electrode/electrolyte interfacial compatibility simultaneously in a facile and scalable way. In this work, for the first time, the combination of salt affluent Poly(ethylene oxide) with Li6.75La3Zr1.75Ta0.25O12 nanofibers was designed and intensively evaluated. The synergistic effect of each component in the electrolyte enhances the ionic conductivity to 2.13 × 10-4 S cm-1 at 25 °C and exhibits a high transference number of 0.57. The composite electrolyte possesses superior interfacial stability against Li metal for over 680 h in Li symmetric cells even at a relatively high current density of 2 mA cm-2. The all-solid-state batteries employing the solid electrolytes exhibit excellent cycling stability at room temperature and superior safety performance. This work proposes a brand-new strategy to design and fabricate solid electrolytes in a versatile way for room-temperature all-solid-state batteries.

11.
Carbohydr Polym ; 214: 213-220, 2019 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-30925991

RESUMO

Nowadays the development of natural biomaterials as promising building polymers for flexible, biodegradable, biocompatible and environmentally friendly electronic devices is of great interest. As the most common natural polymers, cellulose and its derivatives have the potential to be applied in the devices owing to the easy processing, nontoxicity and biodegradability. Here, write-once-read-many-times resistive switching devices based on biodegradable carboxymethyl cellulose-graphene oxide (CMC-GO) nanocomposite are demonstrated for the first time. The hybridization sites formed by the gelation of CMC and GO molecules contribute to the excellent memory behaviors. When compared with devices base on pure GO and CMC, the device with the Al/CMC-GO/Al/SiO2 structure exhibits brilliant write-once-read-many-times (WORM) switching characteristics such as high ON/OFF current ratio of ˜105, low switching voltage of 2.22 V, excellent stability and durability. What's more, the device shows high flexibility and good resistive switching behaviors even with soft PET substrate (Al/CMC-GO/Al/PET structure). This newly designed cellulose-graphene oxide-based polymer nanocomposites are quite cheap and easy processed for large scale manufacturing of memory devices and can further contribute to future biodegradable data storage applications such as portable stretchable displays, wearable electronics and electronic skins in the coming age of artificial intelligence.


Assuntos
Carboximetilcelulose Sódica/química , Dispositivos de Armazenamento em Computador , Equipamentos e Provisões Elétricas , Grafite/química , Nanocompostos/química , Alumínio/química , Carboximetilcelulose Sódica/síntese química , Eletrodos , Grafite/síntese química , Dióxido de Silício/química
12.
Dalton Trans ; 48(10): 3263-3269, 2019 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-30776033

RESUMO

Solid polymer electrolytes (SPEs) have drawn considerable attention owing to their reliable safety performance, electrochemical stability and exceptional flexibility, which make them superior to conventional liquid electrolytes. Here, we report a novel composite electrolyte which is composed of homogeneously dispersed Li ion-conducting Li0.33La0.557TiO3 (LLTO) nanowires in a poly(ethylene oxide) (PEO)/LiClO4 matrix. It is demonstrated that only 3 wt% LLTO nanofibers are needed for the optimal performance of SPEs. The PEO-based composite electrolyte shows an excellent Li ion conductivity of 4.01 × 10-4 S cm-1 at 60 °C. In addition, it is worth mentioning that the all-solid-state lithium battery based on this composite electrolyte exhibits a specific capacity of 140 mA h g-1 and an excellent capacity retention of 92.4% after running 100 cycles at a rate of 1C and 60 °C. The study offers a superior alternative for the design of PEO-based solid composite electrolytes.

13.
Int J Biol Macromol ; 126: 1030-1036, 2019 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-30611805

RESUMO

It is highly desirable to develop biodegradable UV-shielding materials from the renewable resources as the ever-increasing demand for the sustainable environment. In this work, TiO2 decorated lignin particles (TiO2@lignin) were synthesized successfully by hydrothermal method in aqueous solution to improve the UV shielding performance of lignin particles. The poly(propylene carbonate) (PPC) composite films (thickness of ~23 µm) with different contents of TiO2@lignin were prepared via a blade-casting method. Morphological analysis showed that the TiO2@lignin dispersed uniformly in the PPC matrix with a good miscibility. UV-vis transmission spectra results revealed that the PPC composite film containing 5 wt% TiO2@lignin could absorb about 90% of UV light in the full UV band (200-400 nm), indicating the TiO2@lignin had a good UV-shielding property. Moreover, the presence of TiO2@lignin could significantly improve the thermal stability of the PPC/TiO2@lignin composite films. The DMA results showed that the introduction of TiO2@lignin could enhance the storage modulus and glass transition temperature simultaneously.


Assuntos
Materiais Biocompatíveis/química , Química Verde , Lignina/química , Propano/análogos & derivados , Titânio/química , Raios Ultravioleta , Varredura Diferencial de Calorimetria , Módulo de Elasticidade , Nanopartículas/química , Nanopartículas/ultraestrutura , Espectroscopia Fotoeletrônica , Propano/química , Espectrofotometria Ultravioleta , Espectroscopia de Infravermelho com Transformada de Fourier , Temperatura , Termogravimetria , Difração de Raios X
14.
Colloids Surf B Biointerfaces ; 167: 538-543, 2018 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-29730575

RESUMO

Coating of antibacterial layer on the surface of cellulosic paper has numerous potential applications. In the present work, sodium alginate (SA) served as a binder to disperse Zn2+ and the prepared zinc oxide (ZnO) particles were used as antibacterial agents. The rheology test revealed that there were cross-linking between Zn2+ and SA molecular chains in the aqueous solution, resulting in the viscosity of ZnO/SA composite coating increased in the low shear rate region and decreased in the high shear rate region as compared with pure SA. SEM and EDS mapping images showed that the ZnO particles were prepared successfully at 120 °C and dispersed homogeneously on the surface of cellulose fibers and the pores of cellulosic papers. The thermal stabilities of the coated papers decreased as compared to the original blank cellulosic paper, which was ascribed to the low thermal stability of SA and the catalytic effect of ZnO on SA. The tensile stress and Young's modulus of ZnO/SA composite coated paper increased up 39.5% and 30.7%, respectively, as compared with those of blank cellulosic paper. The antibacterial activity tests indicated that the ZnO/SA composite coating endowed the cellulosic paper with effectively growth inhibition of both Gram-negative bacteria E. coli and Gram-positive bacteria S. aureu.


Assuntos
Alginatos/química , Antibacterianos/química , Celulose/química , Nanocompostos/química , Papel , Óxido de Zinco/química , Antibacterianos/farmacologia , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacologia , Módulo de Elasticidade , Escherichia coli/efeitos dos fármacos , Ácido Glucurônico/química , Ácidos Hexurônicos/química , Testes de Sensibilidade Microbiana , Microscopia Eletrônica de Varredura , Nanocompostos/ultraestrutura , Reologia , Staphylococcus aureus/efeitos dos fármacos , Propriedades de Superfície , Difração de Raios X
15.
Anal Chem ; 90(12): 7399-7405, 2018 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-29812910

RESUMO

On-site monitoring of heavy metals in drinking water has become crucial because of several high profile instances of contamination. Presently, reliable techniques for trace level heavy metal detection are mostly laboratory based, while the detection limits of contemporary field-based methods are barely meeting the exposure limits set by regulatory bodies such as the World Health Organization (WHO). Here, we show an on-site deployable, Pb2+ sensor on a dual-gated transistor platform whose lower detection limit is 2 orders of magnitude better than the traditional sensor and 1 order of magnitude lower than the exposure limit set by WHO. The enhanced sensitivity of our design is verified by numerically solving PNP (Planck-Nernst-Poisson) model. We demonstrate that the enhanced sensitivity is due to the suppression of ionic flux. The simplicity and the robustness of the design make it applicable for on-site screening, thereby facilitating rapid response to contamination events.


Assuntos
Água Potável/química , Chumbo/análise , Íons , Limite de Detecção , Metais Pesados/análise , Poluentes Químicos da Água/análise
16.
ACS Appl Mater Interfaces ; 10(8): 7487-7496, 2018 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-29411961

RESUMO

Interface engineering has been recognized to be substantially critical for achieving efficient charge separation, charge carrier transport, and enhanced device performance in emerging optoelectronics. Nevertheless, precise control of the interface structure using current techniques remains a formidable challenge. Herein, we demonstrate a facile and versatile protocol wherein in situ thiol-ene click photopolymerization-induced phase separation is implemented for constructing heterojunction semiconductor interfaces. This approach generates continuous mountainlike heterojunction interfaces that favor efficient exciton dissociation at the interface while providing a continuous conductive area for hole transport above the interface. This facile low-temperature paradigm presents good adaptability to both rigid and flexible substrates, offering high-performance UV-responsive phototransistors with a normalized detectivity up to 6.3 × 1014 cm Hz1/2 W-1 (also called jones). Control experiments based on ex situ photopolymerization and in situ thermal polymerization are also implemented to demonstrate the superiority of this novel paradigm.

17.
ACS Appl Mater Interfaces ; 10(4): 4086-4094, 2018 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-29345473

RESUMO

Piezoresistive microsensors are considered to be essential components of the future wearable electronic devices. However, the expensive cost, complex fabrication technology, poor stability, and low yield have limited their developments for practical applications. Here, we present a cost-effective, relatively simple, and high-yield fabrication approach to construct highly sensitive and ultrastable piezoresistive sensors using a bioinspired hierarchically structured graphite/polydimethylsiloxane composite as the active layer. In this fabrication, a commercially available sandpaper is employed as the mold to develop the hierarchical structure. Our devices exhibit fascinating performance including an ultrahigh sensitivity (64.3 kPa-1), fast response time (<8 ms), low limit of detection of 0.9 Pa, long-term durability (>100 000 cycles), and high ambient stability (>1 year). The applications of these devices in sensing radial artery pulses, acoustic vibrations, and human body motion are demonstrated, exhibiting their enormous potential use in real-time healthcare monitoring and robotic tactile sensing.


Assuntos
Pele , Grafite , Humanos , Movimento (Física) , Tato
18.
Polymers (Basel) ; 10(3)2018 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-30966371

RESUMO

In this paper we study the release of cargo from polymeric nano-carriers under shear. Vesicles formed by two star block polymers- A 12 B 6 C 2 ( A B C ) and A 12 B 6 A 2 ( A B A )-and one linear block copolymer- A 14 B 6 ( A B ), are investigated using dissipative particle dynamics (DPD) simulations. A - and C -blocks are solvophobic and B -block is solvophilic. The three polymers form vesicles of different structures. The vesicles are subjected to shear both in bulk and between solvophobic walls. In bulk shear, the mechanisms of cargo release are similar for all vesicles, with cargo travelling through vesicle membrane with no preferential release location. When sheared between walls, high cargo release rate is only observed with A B C vesicle after it touches the wall. For A B C vesicle, the critical condition for high cargo release rate is the formation of wall-polymersome interface after which the effect of shear rate in promoting cargo release is secondary. High release rate is achieved by the formation of solvophilic pathway allowing cargo to travel from the vesicle cavity to the vesicle exterior. The results in this paper show that well controlled target cargo release using polymersomes can be achieved with polymers of suitable design and can potentially be very useful for engineering applications. As an example, polymersomes can be used as carriers for surface active friction reducing additives which are only released at rubbing surfaces where the additives are needed most.

19.
J Colloid Interface Sci ; 506: 603-612, 2017 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-28759860

RESUMO

HYPOTHESIS: The polymer solution concentration determines whether electrospinning or electro-spraying occurs, while the addition of the non-solvent into the polymer solution strongly influences the surface morphology of the obtained products. Both smooth and porous surfaces of the electro-sprayed microspheres can be harvested by choosing different non-solvent and its amount as well as incorporating polymeric additives. EXPERIMENTS: The influences of the solution concentration, weight ratio between the non-solvent and the copolymer, and the polymeric additives on the surface morphology and the wettability of the electro-sprayed products were systematically studied. FINDINGS: Surface pores and/or asperities on the microsphere surface were mainly caused by the non-solvent induced phase separation (NIPS) and subsequent evaporation of the non-solvent during electro-spraying. With increasing polymer solution concentration, the microsphere was gradually changed to the bead-on-string geometry and finally to a nanofiber form, leading to a sustained decrease of the contact angle (CA). It was found that the substrate coatings derived from the microspheres possessing hierarchical surface pores or dense asperities had high surface roughness and super-hydrophobicity with CAs larger than 150° while sliding angles smaller than 10°; but coatings composed of microspheres with smooth surfaces gave relatively low CAs.

20.
Polymers (Basel) ; 9(7)2017 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-30970953

RESUMO

Terpolymer raspberry vesicles contain domains of different chemical affinities. They are potential candidates as multi-compartment cargo carriers. Their efficacy depends on their stability and load capacity. Using a model star terpolymer system in an aqueous solution, a dissipative particle dynamic (DPD) simulation is employed to investigate how equilibrium aggregate structures are affected by polymer concentration and pairwise interaction energy in a solution. It is shown that a critical mass of polymer is necessary for vesicle formation. The free energy of the equilibrium aggregates are calculated and the results show that the transition from micelles to vesicles is governed by the interactions between the longest solvophobic block and the solvent. In addition, the ability of vesicles to encapsulate solvent is assessed. It is found that reducing the interaction energy favours solvent encapsulation, although solvent molecules can permeate through the vesicle's shell when repulsive interactions among monomers are low. Thus, one can optimize the loading capacity and the release rate of the vesicles by turning pairwise interaction energies of the polymer and the solvent. The ability to predict and control these aspects of the vesicles is an essential step towards designing vesicles for specific purposes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...