Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Front Plant Sci ; 15: 1394587, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38779067

RESUMO

Gynostemma pentaphyllum (Thunb.) Makino is an important producer of dammarene-type triterpenoid saponins. These saponins (gypenosides) exhibit diverse pharmacological benefits such as anticancer, antidiabetic, and immunomodulatory effects, and have major potential in the pharmaceutical and health care industries. Here, we employed single-cell RNA sequencing (scRNA-seq) to profile the transcriptomes of more than 50,000 cells derived from G. pentaphyllum shoot apexes and leaves. Following cell clustering and annotation, we identified five major cell types in shoot apexes and four in leaves. Each cell type displayed substantial transcriptomic heterogeneity both within and between tissues. Examining gene expression patterns across various cell types revealed that gypenoside biosynthesis predominantly occurred in mesophyll cells, with heightened activity observed in shoot apexes compared to leaves. Furthermore, we explored the impact of transposable elements (TEs) on G. pentaphyllum transcriptomic landscapes. Our findings the highlighted the unbalanced expression of certain TE families across different cell types in shoot apexes and leaves, marking the first investigation of TE expression at the single-cell level in plants. Additionally, we observed dynamic expression of genes involved in gypenoside biosynthesis and specific TE families during epidermal and vascular cell development. The involvement of TE expression in regulating cell differentiation and gypenoside biosynthesis warrant further exploration. Overall, this study not only provides new insights into the spatiotemporal organization of gypenoside biosynthesis and TE activity in G. pentaphyllum shoot apexes and leaves but also offers valuable cellular and genetic resources for a deeper understanding of developmental and physiological processes at single-cell resolution in this species.

3.
Nat Plants ; 9(1): 179-190, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36522449

RESUMO

Monoterpenoid indole alkaloids (MIAs) are among the most diverse specialized metabolites in plants and are of great pharmaceutical importance. We leveraged single-cell transcriptomics to explore the spatial organization of MIA metabolism in Catharanthus roseus leaves, and the transcripts of 20 MIA genes were first localized, updating the model of MIA biosynthesis. The MIA pathway was partitioned into three cell types, consistent with the results from RNA in situ hybridization experiments. Several candidate transporters were predicted to be essential players shuttling MIA intermediates between inter- and intracellular compartments, supplying potential targets to increase the overall yields of desirable MIAs in native plants or heterologous hosts through metabolic engineering and synthetic biology. This work provides not only a universal roadmap for elucidating the spatiotemporal distribution of biological processes at single-cell resolution, but also abundant cellular and genetic resources for further investigation of the higher-order organization of MIA biosynthesis, transport and storage.


Assuntos
Alcaloides de Triptamina e Secologanina , Alcaloides de Triptamina e Secologanina/metabolismo , Análise de Sequência de RNA , Regulação da Expressão Gênica de Plantas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...