Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phytother Res ; 35(10): 5741-5753, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34355433

RESUMO

Currently available therapies for hepatocellular carcinoma (HCC), with a high morbidity and high mortality, are only marginally effective and with sharp adverse side effects, which makes it compulsory to explore novel and more effective anticancer molecules. Chinese medicinal herbs exhibited prominent anticancer effects and were applied to supplement clinical cancer treatment. Here, we reported a compound, trilobolide-6-O-isobutyrate (TBB), isolated from the flowers of Wedelia trilobata with a markedly cytotoxic effect on HCC cells. We found that TBB time- and dose-dependently inhibited HCC cells' growth and colony formation in vitro. Moreover, TBB induced cell cycle arrest at the G2/M phase, mitochondrial caspase-dependent apoptosis, and suppressed migration and invasion, as well as the glycolysis of HCC cells. Mechanistically, our data indicated that TBB inhibited the STAT3 pathway activation by directly interacting with the TYR 640/657 sites of the STAT3 protein and decreasing the level of p-STAT3. TBB also regulated the expression of PCNA, Ki67, Cyclin B1, Cyclin E, Bax, Bcl2, MMP2/9, and PGK1 through the inhibition of the IL-6/STAT3 signaling pathway. Lastly, we confirmed that TBB effectively eliminated tumor growth without causing overt toxicity to healthy tissues in the xenograft tumor model. The exploration of anticancer activity and the underlying mechanism of TBB suggested its usage as a promising chemotherapeutic agent for HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Apoptose , Butiratos , Carcinogênese , Carcinoma Hepatocelular/tratamento farmacológico , Linhagem Celular Tumoral , Proliferação de Células , Furanos , Humanos , Interleucina-6/metabolismo , Isobutiratos , Neoplasias Hepáticas/tratamento farmacológico , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais
2.
Eur J Pharmacol ; 908: 174370, 2021 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-34324855

RESUMO

Colorectal cancer (CRC) is the most fatal gastrointestinal tumor and it is urge to explore powerful drugs for the treatment. Diosgenin (DSG) as a new steroidal had been reported exerts anti-tumor activity in multiple cancers, including CRC. However, the potential mechanism of DSG suppresses CRC remains further to be revealed. Here, we reported that DSG inhibited proliferation of CRC cells in dose- and time-dependent manner, induced apoptosis by modulating p53 and Bcl-2 family proteins expression to mediate mitochondrial apoptosis pathway, suppressed migration and invasion by reducing MMP-9 (matrix metalloproteinase) and decreased aerobic glycolysis by mediating glucose transporter (GLUT) like GLUT3 and GLUT4, and pyruvate carboxylase PC downregulation. Intriguingly, mechanistic study suggests those phenotypes involved DSG inhibited cAMP/PKA/CREB pathway in CRC cells, and result to inhibit the phosphorylation of CREB to regulate the transcription of genes above-mentioned. Finally, nude mice xenograft tumor model further indicated that DSG could be a great agent to suppress the growth of CRC cells in vivo and have no obvious side effects. Taken together, we revealed a unique mechanism that DSG suppresses CRC cells through cAMP/PKA/CREB pathway and DSG is a promising candidate drug for CRC treatment.


Assuntos
Diosgenina , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células , Camundongos , Transdução de Sinais
3.
Zool Res ; 42(3): 262-266, 2021 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-33764016

RESUMO

The Dianchi golden-line barbel, Sinocyclocheilus grahami (Regan, 1904), is one of the "Four Famous Fishes" of Yunnan Province, China. Given its economic value, this species has been artificially bred successfully since 2007, with a nationally selected breed (" S. grahami, Bayou No. 1") certified in 2018. For the future utilization of this species, its growth rate, disease resistance, and wild adaptability need to be improved, which could be achieved with the help of molecular marker-assisted selection (MAS). In the current study, we constructed the first chromosome-level genome of S. grahami, assembled 48 pseudo-chromosomes, and obtained a genome assembly of 1.49 Gb. We also performed QTL-seq analysis of S. grahami using the highest and lowest bulks (i.e., largest and smallest size) in both a sibling and random population. We screened two quantitative trait loci (QTLs) (Chr3, 14.9-39.1 Mb and Chr17, 4.1-27.4 Mb) as the major growth-related locations. Several candidate genes (e.g., map2k5, stat1, phf21a, sox6, and smad6) were also identified, with functions related to growth, such as cell differentiation, neuronal development, skeletal muscle development, chondrogenesis, and immunity. These results built a solid foundation for in-depth MAS studies on the growth traits of S. grahami.


Assuntos
Cyprinidae/crescimento & desenvolvimento , Cyprinidae/genética , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Genoma , Locos de Características Quantitativas/genética , Animais , Cromossomos , Ligação Genética , Estudo de Associação Genômica Ampla
4.
Angew Chem Int Ed Engl ; 57(24): 7106-7110, 2018 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-29722463

RESUMO

Aggregation-induced emission (AIE) is an attractive phenomenon in which materials display strong luminescence in the aggregated solid states rather than in the conventional dissolved molecular states. However, highly luminescent inks based on AIE are hard to be obtained because of the difficulty in finely controlling the crystallinity of AIE materials at nanoscale. Herein, we report the preparation of highly luminescent inks via oil-in-water microemulsion induced aggregation of Cu-I hybrid clusters based on the highly soluble copper iodide-tris(3-methylphenyl)phosphine (Cu4 I4 (P-(m-Tol)3 )4 ) hybrid. Furthermore, we can synthesize a series of AIE inks with different light-emission colors to cover the whole visible spectrum range via a facile ligand exchange processes. The assemblies of Cu-I hybrid clusters with AIE characteristics will pave the way to fabricate low-cost highly luminescent inks.

5.
Polymers (Basel) ; 10(4)2018 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-30966381

RESUMO

In the current study, the poly (amide-urethane) (PAUt) membranes were successfully fabricated by interfacial polymerization of m-phenylenediamine (MPD) and 5-choroformyloxyisophaloyl chloride (CFIC) on the polysulfone substrates. Two modification methods based on layer-by-layer assembly were applied to modify the PAUt membrane surface to achieve antifouling property: 1. Chitosan (CS) was directly self-assembled on the PAUt membrane (i.e., PAUt-CS); and 2. polydimethyl diallyl ammonium chloride (PDDA), polystyrene sulfonate (PSS), and CS were successively self-assembled on the membrane surface (i.e., PAUt-PDDA/PSS/CS). The resultant membranes were symmetrically characterized by Attenuated Total Reflection Fourier Transform Infrared Spectroscopy (ATR-FTIR), X-ray Photoelectron Spectroscopy (XPS), Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM) and Contact Angle Meter (CAM), respectively. The results indicated that the modified membranes had much smoother and more hydrophilic surfaces as compared to the nascent PAUt membrane. Meanwhile, the modified membranes exhibited better reverse osmosis performance in terms of water permeability and salt rejection. After the modified membranes were fouled by lake water, the PAUt-PDDA/PSS/CS membrane presented the best antifouling performance among the three types of membranes. Combining the reverse osmosis performance with the anti-fouling property obviously, the PAUt-PDDA/PSS/CS membrane behaved as a promising candidate to be used in real applications.

6.
Polymers (Basel) ; 10(6)2018 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-30966720

RESUMO

In this study, modification of polysulfone (PSf)/sulfonated polysulfone (SPSf) blended porous ultrafiltration (UF) support membranes was proposed to improve the reverse osmosis (RO) performance of aromatic polyamide thin film composite (TFC) membranes. The synergistic effects of solvent, polymer concentration, and SPSf doping content in the casting solution were investigated systematically on the properties of both porous supports and RO membranes. SEM and AFM were combined to characterize the physical properties of the membranes, including surface pore natures (porosity, mean pore radius), surface morphology, and section structure. A contact angle meter was used to analyze the membrane surface hydrophilicity. Permeate experiments were carried out to evaluate the separation performances of the membranes. The results showed that the PSf/SPSf blended porous support modified with 6 wt % SPSf in the presence of DMF and 14 wt % PSf had higher porosity, bigger pore diameter, and a rougher and more hydrophilic surface, which was more beneficial for fabrication of a polyamide TFC membrane with favorable reverse osmosis performance. This modified PSf/SPSf support endowed the RO membrane with a more hydrophilic surface, higher water flux (about 1.2 times), as well as a slight increase in salt rejection than the nascent PSf support. In a word, this work provides a new facile method to improve the separation performance of polyamide TFC RO membranes via the modification of conventional PSf porous support with SPSf.

7.
RSC Adv ; 8(66): 37817-37827, 2018 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-35558596

RESUMO

A novel reverse osmosis (RO) composite membrane, poly(amide-urethane-imide@Ag) (PAUI@Ag), was prepared on a polysulfone supporting film through two-step interfacial polymerization. First, in the 1st interfacial polymerization procedure, a new tri-functional crosslinking agent with -OCOCl and -COCl groups, 5-choroformyloxyisophaloyl chloride (CFIC), was reacted with 4-methyl-phenylenediamine (MMPD) without curing treatment to obtain the poly(amide-urethane) base membrane with a CFIC-MMPD precursor separation layer. And then N,N'-dimethyl-m-phenylenediamine (DMMPD) with nano-Ag particle dispersion was introduced onto the base membrane to further construct a CFIC-DMMPD modified ultrathin separation layer via the 2nd interfacial polymerization. Thus, the PAUI@Ag RO membrane with poly(amide-urethane-imide) bi-layer skin was obtained. The membrane was characterized for the chemical composition of separation layer, the membrane cross-section structure and the membrane surface morphology. Permeation experiment was employed to evaluate the PAUI@Ag membrane performance including salt rejection rate and water flux. The results revealed that the PAUI@Ag membrane composed the highly cross-linked separation layer with entire ridges and valleys, small surface roughness, and well dispersed nano-Ag particles. Upon exposure of the membranes to high concentration of free chlorine solutions, the PAUI@Ag RO membrane showed a slightly less chlorine-resistant property compared with the nascent PAUI RO membrane, but was still superior to the conventional polyamide MPD-TMC RO membrane, meanwhile it processed higher anti-biofouling property.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...