Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ann Rheum Dis ; 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38724075

RESUMO

OBJECTIVE: Recent studies indicate that N-acetyltransferase 10 (NAT10)-mediated ac4C modification plays unique roles in tumour metastasis and immune infiltration. This study aimed to uncover the role of NAT10-mediated ac4C in fibroblast-like synoviocytes (FLSs) functions and synovial immune cell infiltration in rheumatoid arthritis (RA). METHODS: FLSs were obtained from active established patients with RA. Protein expression was determined by western blotting or immunohistochemistry or multiplexed immunohistochemistry. Cell migration was measured using a Boyden chamber. ac4C-RIP-seq combined with RNA-seq was performed to identify potential targets of NAT10. RNA immunoprecipitation was used to validate the interaction between protein and mRNA. NAT10 haploinsufficiency, inhibitor remodelin or intra-articular Adv-NAT10 was used to suppress arthritis in mice with delayed-type hypersensitivity arthritis (DYHA) and collagen II-induced arthritis (CIA) and rats with CIA. RESULTS: We found elevated levels of NAT10 and ac4C in FLSs and synovium from patients with RA. NAT10 knockdown or specific inhibitor treatment reduced the migration and invasion of RA FLSs. Increased NAT10 level in the synovium was positively correlated with synovial infiltration of multiple types of immune cells. NAT10 inhibition in vivo attenuated the severity of arthritis in mice with CIA and DTHA, and rats with CIA. Mechanistically, we explored that NAT10 regulated RA FLS functions by promoting stability and translation efficiency of N4-acetylated PTX3 mRNA. PTX3 also regulated RA FLS aggression and is associated with synovial immune cell infiltration. CONCLUSION: Our findings uncover the important roles of NAT10-mediated ac4C modification in promoting rheumatoid synovial aggression and inflammation, indicating that NAT10 may be a potential target for the treatment of RA, even other dysregulated FLSs-associated disorders.

2.
Int Immunopharmacol ; 128: 111433, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38181676

RESUMO

OBJECTIVE: Coptisine, a natural bioactive small molecular compound extracted from traditional Chinese herb Coptis chinensis, has been shown to exhibit anti-tumor effect. However, its contribution to autoimmune diseases such as rheumatoid arthritis (RA) is unknown. Here, we evaluate the effect of coptisine in controlling fibroblast-like synoviocytes (FLS)-mediated synovial proliferation and aggression in RA and further explore its underlying mechanism(s). METHODS: FLS were separated from synovial tissues obtained from patients with RA. Protein expression was measured by Western blot or immunohistochemistry. Gene expression was detected by quantitative RT-PCR. The EdU incorporation was used to measure cell proliferation. Migration and invasion were determined by Boyden chamber assay. RNA sequencing analysis was used to seek for the target of coptisine. The in vivo effect of coptisine was evaluated in collagen-induced arthritis (CIA) model. RESULTS: Treatment with coptisine reduced the proliferation, migration, and invasion, but not apoptosis of RA FLS. Mechanistically, we identified PSAT1, an enzyme that catalyzes serine/one-carbon/glycine biosynthesis, as a novel targeting gene of coptisine in RA FLS. PSAT1 expression was increased in FLS and synovial tissues from patients with RA compared to healthy control subjects. Coptisine treatment or PSAT1 knockdown reduced the TNF-α-induced phosphorylation of p38, ERK1/2, and JNK MAPK pathway. Interestingly, coptisine administration improved the severity of arthritis and reduced synovial PSAT1 expression in mice with CIA. CONCLUSIONS: Our data demonstrate that coptisine treatment suppresses aggressive and proliferative actions of RA FLS by targeting PSAT1 and sequential inhibition of phosphorylated p38, ERK1/2, and JNK MAPK pathway. Our findings suggest that coptisine might control FLS-mediated rheumatoid synovial proliferation and aggression, and be a novel potential agent for RA treatment.


Assuntos
Artrite Reumatoide , Berberina/análogos & derivados , Sinoviócitos , Humanos , Camundongos , Animais , Agressão , Movimento Celular , Artrite Reumatoide/tratamento farmacológico , Membrana Sinovial/patologia , Proliferação de Células , Fibroblastos , Células Cultivadas
3.
Arthritis Rheumatol ; 76(2): 192-205, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37584615

RESUMO

OBJECTIVE: Fibroblast-like synoviocytes (FLSs) are critical for promoting joint damage in rheumatoid arthritis (RA). N6 -methyladenosine (m6 A) modification plays key roles in various diseases, but its role in the pathogenesis of RA is largely unknown. Here, we investigate increased demethylase ALKBH5 promotion of proliferation, migration, and invasion of RA FLSs via regulating JARID2 expression. METHODS: ALKBH5 expression in FLSs was evaluated using real-time quantitative polymerase chain reaction (RT-qPCR) and Western blot. 5-ethynyl-2'-deoxyuridine, scratch wound healing, and transwell assays were implemented to determine the role of ALKBH5 on RA FLS proliferation, mobility, and migration. Then, m6 A sequencing combined with RNA sequencing was performed to identify the potential targets of ALKBH5. RNA immunoprecipitation and RNA pulldown were then used to validate the interaction between the protein and messenger RNA (mRNA). Collagen-induced arthritis (CIA) and delayed-type hypersensitivity arthritis (DTHA) models were further established to assess the therapeutic potency of ALKBH5 in vivo. RESULTS: We demonstrated that ALKBH5 expression was increased in FLSs and synovium from RA. Functionally, ALKBH5 knockdown inhibited the proliferation, migration, and invasion of RA FLSs, whereas overexpression of ALKBH5 displayed the opposite effect. Mechanistically, ALKBH5 mediated m6 A modification in the JARID2 mRNA and enhanced its mRNA stability in cooperation with IGF2BP3. Intriguingly, the severity of arthritis was attenuated in mice with DTHA and ALKBH5 knockout or rats with CIA and intra-articular injection of ALKBH5 short hairpin RNA. CONCLUSION: Our findings suggest that ALKBH5-mediated m6 A modification is crucial for synovial hyperplasia and invasion in RA. ALKBH5 might be a potential therapeutic target for RA and even for dysregulated fibroblasts in a wide range of diseases.


Assuntos
Artrite Experimental , Artrite Reumatoide , Sinoviócitos , Animais , Camundongos , Ratos , Artrite Experimental/metabolismo , Artrite Reumatoide/tratamento farmacológico , Movimento Celular , Proliferação de Células/genética , Células Cultivadas , Fibroblastos/metabolismo , Metilação , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/metabolismo , Sinoviócitos/metabolismo
4.
J Immunol ; 210(2): 135-147, 2023 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-36458981

RESUMO

The aggressive phenotype exhibited by fibroblast-like synoviocytes (FLSs) is critical for the progression of joint destruction in rheumatoid arthritis (RA). Long noncoding RNAs (lncRNAs) have crucial roles in the pathogenesis of diverse disorders; however, few have been identified that might be able to control the joint damage in RA. In this study, we identified an lncRNA, ENST00000509194, which was expressed at abnormally high levels in FLSs and synovial tissues from patients with RA. ENST00000509194 positively modulates the migration and invasion of FLSs by interacting with human Ag R (HuR, also called ELAVL1), an RNA-binding protein that mainly stabilizes mRNAs. ENST00000509194 binds directly to HuR in the cytoplasm to form a complex that promotes the expression of the endocytic adaptor protein APPL2 by stabilizing APPL2 mRNA. Knockdown of HuR or APPL2 impaired the migration and invasion of RA FLSs. Given its close association with HuR and FLS migration, we named ENST00000509194 as HAFML (HuR-associated fibroblast migratory lncRNA). Our findings suggest that an increase in synovial HAFML might contribute to FLS-mediated rheumatoid synovial aggression and joint destruction, and that the lncRNA HAFML might be a potential therapeutic target for dysregulated fibroblasts in a wide range of diseases.


Assuntos
Artrite Reumatoide , RNA Longo não Codificante , Sinoviócitos , Humanos , Sinoviócitos/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Membrana Sinovial/patologia , Artrite Reumatoide/patologia , Movimento Celular/genética , Fibroblastos/metabolismo , Células Cultivadas , Proliferação de Células
5.
Cell Death Dis ; 13(12): 1035, 2022 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-36513634

RESUMO

Fibroblast-like synoviocytes (FLSs), play a key role in perpetuating synovial inflammation and bone erosion in rheumatoid arthritis (RA), however, the underlying mechanism(s) of RA FLSs activation and aggression remain unclear. Identifying endogenous proteins that selectively target FLSs is urgently needed. Here, we systematically identified that secreted modular calcium-binding protein 2 (SMOC2), was significantly increased in RA FLSs and synovial tissues. SMOC2 knockdown specifically regulated cytoskeleton remodeling and decreased the migration and invasion of RA FLSs. Mechanistically, cytoskeleton-related genes were significantly downregulated in RA FLSs with reduced SMOC2 expression, especially the motor protein myosin1c (MYO1C). SMOC2 controlled MYO1C expression by SRY-related high-mobility group box 4 (SOX4) and AlkB homolog 5 (ALKHB5) mediated-m6A modification through transcriptional and post-transcriptional regulation. Furthermore, intra-articular Ad-shRNA-SMOC2 treatment attenuated synovial inflammation as well as bone and cartilage erosion in rats with collagen-induced arthritis (CIA). Our findings suggest that increased SMOC2 expression in FLSs may contribute to synovial aggression and joint destruction in RA. SMOC2 may serve as a potential target against RA. SMOC2-mediated regulation of the synovial migration and invasion in RA FLSs. In RA FLSs, SMOC2 is significantly increased, leading to the increased level of MYO1C via SOX4-mediated transcriptional regulation and ALKBH5-mediated m6A modification, thereby causing cytoskeleton remodeling and promoting RA FLSs migration and invasion. The Figure was drawn by Figdraw.


Assuntos
Artrite Reumatoide , Sinoviócitos , Ratos , Animais , Sinoviócitos/metabolismo , Células Cultivadas , Transdução de Sinais/genética , Artrite Reumatoide/genética , Artrite Reumatoide/metabolismo , Fibroblastos/metabolismo , Movimento Celular/genética , Inflamação/metabolismo , Agressão , Proliferação de Células/genética
6.
Ann Transl Med ; 10(8): 431, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35571412

RESUMO

Background: Fibroblast-like synoviocytes (FLSs) play a critical role in promoting synovial aggression and joint destruction in rheumatoid arthritis (RA). Cyclic GMP-AMP synthase (cGAS)/stimulator of interferon gene (STING) signaling plays an important role in controlling a series of cellular biological processes. However, it is still unclear whether cGAS/STING signaling regulates rheumatoid synovial aggression. Methods: Cell migration and invasion were detected using a Transwell chamber. Gene expression was measured using quantitative reverse transcription-polymerase chain reaction (qRT-PCR), and protein expression was detected by western blotting. Reactive oxygen species (ROS) levels were measured by 2',7'-dichlorodihydrofluorescein diacetate (DCFH-DA) probe. F-actin staining and immunofluorescence assays were used to investigate lamellipodia formation and nuclear translocation, respectively. A severe combined immunodeficiency (SCID) mouse model was established to observe the migration and invasion of RA FLSs in vivo. Results: Our results showed that cytosolic double-stranded DNA (dsDNA)-induced cGAS/STING activation promoted the in vitro migration and invasion of RA FLSs. Moreover, RA FLSs treated with cGAS or STING short hairpin RNA (shRNA) exhibited reduced invasion into cartilage in the SCID model. Mechanistically, we determined that cGAS/STING activation leads to increased mitochondrial ROS levels, and thereby increases phosphorylation of mammalian sterile 20-like kinase 1 (MST1), a core component of the Hippo pathway, subsequently promoting activation of forkhead box1 (FOXO1). MST1 and FOXO1 knockdown also diminished the migration and invasion of RA FLSs. Conclusions: Our findings suggest that cGAS/STING signaling has an important role in regulating rheumatoid synovial aggression and that targeting cGAS/STING may represent a novel potential therapy for RA.

7.
Int Immunopharmacol ; 103: 108498, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34972067

RESUMO

The mechanisms that control B cell terminal differentiation remain undefined. Here, we investigate the role of bromodomain-containing protein 4 (Brd4) in regulating B cell differentiation and its therapeutic potential for B cell-mediated autoimmune diseases including systemic lupus erythematosus (SLE). We showed that Brd4 inhibitor PFI-1 suppressed plasmablast-mediated plasma cell differentiation in healthy human CD19+ B cells. PFI-1 reduced IgG and IgM secretion in costimulation-induced human B cells. We also observed a reduced percentage of plasma cells in mice with B cell-specific deletion of the Brd4 gene (Brd4flox/floxCD19-cre+). Mechanistically, using the luciferase reporter assay and the chromatin immunoprecipitation, we explored that Brd4 regulates the expression of B lymphocyte-induced maturation protein 1 (BLIMP1), an important transcript factor that is involved in modulation of plasma cell differentiation. Interestingly, PFI-1 decreased the percentages of plasmablasts and plasma cells from patients with SLE. PFI-1 administration reduced the percentages of plasma cells, hypergammaglobulinemia, and attenuated nephritis in MRL/lpr lupus mice. Pristane-injected Brd4flox/floxCD19-cre+ mice exhibited improved nephritis and reduced percentages of plasma cells. These findings suggest an essential factor of Brd4 in regulating plasma cell differentiation. Brd4 inhibition may be a potential strategy for the treatment of B cell-associated autoimmune disorders.


Assuntos
Lúpus Eritematoso Sistêmico , Nefrite Lúpica , Animais , Proteínas de Ciclo Celular , Hematopoese , Humanos , Camundongos , Camundongos Endogâmicos MRL lpr , Proteínas Nucleares , Fatores de Transcrição/genética
8.
JCI Insight ; 6(23)2021 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-34877935

RESUMO

Fibroblast-like synoviocytes (FLSs) play a key role in controlling synovial inflammation and joint destruction in rheumatoid arthritis (RA). The contribution of long noncoding RNAs (lncRNAs) to RA is largely unknown. Here, we show that the lncRNA LINK-A, located mainly in cytoplasm, has higher-than-normal expression in synovial tissues and FLSs from patients with RA. Synovial LINK-A expression was positively correlated with the severity of synovitis in patients with RA. LINK-A knockdown decreased migration, invasion, and expression and secretion of matrix metalloproteinases and proinflammatory cytokines in RA FLSs. Mechanistically, LINK-A controlled RA FLS inflammation and invasion through regulation of tyrosine protein kinase 6-mediated and leucine-rich repeat kinase 2-mediated HIF-1α. On the other hand, we also demonstrate that LINK-A could bind with microRNA 1262 as a sponge to control RA FLS aggression but not inflammation. Our findings suggest that increased level of LINK-A may contribute to FLS-mediated rheumatoid synovial inflammation and aggression. LINK-A might be a potential therapeutic target for RA.


Assuntos
Artrite Reumatoide/genética , Inflamação/genética , RNA Longo não Codificante/genética , Membrana Sinovial/metabolismo , Humanos , Transfecção
9.
Int Immunopharmacol ; 101(Pt A): 108273, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34700130

RESUMO

OBJECTIVE: Nitidine chloride (NC), a natural small molecular compound from traditional Chinese herbal medicine zanthoxylum nitidum, has been shown to exhibit anti-tumor effect. However, its role in autoimmune diseases such as rheumatoid arthritis (RA) is unknown. Here, we investigate the effect of NC in controlling fibroblast-like synoviocytes (FLS)-mediated synovial inflammation and joint destruction in RA and further explore its underlying mechanism(s). METHODS: FLSs were separated from synovial tissues obtained from patients with RA. Protein expression was analyzed by Western blot or immunohistochemistry. Gene expression was measured using quantitative RT-PCR. ELISA was used to measure the levels of cytokines and MMPs. Cell proliferation was detected using EdU incorporation. Migration and invasion were evaluated by Boyden chamber assay. RNA sequencing analysis was used to identify the target of NC. Collagen-induced arthritis (CIA) model was used to evaluate the in vivo effect of NC. RESULTS: NC treatment reduced the proliferation, migration, invasion, and lamellipodia formation but not apoptosis of RA FLSs. We also demonstrated the inhibitory effect of NC on TNF-α-induced expression and secretion of IL-6, IL-8, CCL-2, MMP-1 and MMP-13. Furthermore, we identified KCNH1, a gene that encodes ether-à-go-go-1 channel, as a novel targeting gene of NC in RA FLSs. KCNH1 expression was increased in FLSs and synovial tissues from patients with RA compared to healthy controls. KCNH1 knockdown or NC treatment decreased the TNF-α-induced phosphorylation of AKT. Interestingly, NC treatment ameliorated the severity of arthritis and reduced synovial KCNH1 expression in mice with CIA. CONCLUSIONS: Our data demonstrate that NC treatment inhibits aggressive and inflammatory actions of RA FLSs by targeting KCNH1 and sequential inhibition of AKT phosphorylation. Our findings suggest that NC might control FLS-mediated rheumatoid synovial inflammation and joint destruction, and be a novel therapeutic agent for RA.


Assuntos
Artrite Experimental/tratamento farmacológico , Artrite Reumatoide/tratamento farmacológico , Benzofenantridinas/farmacologia , Canais de Potássio Éter-A-Go-Go/antagonistas & inibidores , Membrana Sinovial/efeitos dos fármacos , Animais , Artrite Experimental/imunologia , Artrite Experimental/patologia , Artrite Reumatoide/imunologia , Artrite Reumatoide/patologia , Benzofenantridinas/uso terapêutico , Células Cultivadas , Canais de Potássio Éter-A-Go-Go/genética , Canais de Potássio Éter-A-Go-Go/metabolismo , Feminino , Fibroblastos/imunologia , Fibroblastos/metabolismo , Técnicas de Silenciamento de Genes , Voluntários Saudáveis , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Cultura Primária de Células , Membrana Sinovial/imunologia , Membrana Sinovial/patologia , Sinoviócitos/efeitos dos fármacos , Sinoviócitos/imunologia
10.
JCI Insight ; 5(18)2020 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-32938830

RESUMO

Fibroblast-like synoviocytes (FLSs) are critical to joint inflammation and destruction in rheumatoid arthritis (RA). Increased glycolysis in RA FLSs contributes to persistent joint damage. SUMOylation, a posttranslational modification of proteins, plays an important role in initiation and development of many diseases. However, the role of small ubiquitin-like modifier-activating (SUMO-activating) enzyme 1 (SAE1)/ubiquitin like modifier activating enzyme 2 (UBA2) in regulating the pathogenic FLS behaviors is unknown. Here, we found an increased expression of SAE1 and UBA2 in FLSs and synovial tissues from patients with RA. SAE1 or UBA2 knockdown by siRNA and treatment with GA, an inhibitor of SAE1/UBA2-mediated SUMOylation, resulted in reduced glycolysis, aggressive phenotype, and inflammation. SAE1/UBA2-mediated SUMOylation of pyruvate kinase M2 (PKM2) promoted its phosphorylation and nuclear translocation and decreased PK activity. Moreover, inhibition of PKM2 phosphorylation increased PK activity and suppressed glycolysis, aggressive phenotype, and inflammation. We further demonstrated that STAT5A mediated SUMOylated PKM2-induced glycolysis and biological behaviors. Interestingly, GA treatment attenuated the severity of arthritis in mice with collagen-induced arthritis and human TNF-α transgenic mice. These findings suggest that an increase in synovial SAE1/UBA2 may contribute to synovial glycolysis and joint inflammation in RA and that targeting SAE1/UBA2 may have therapeutic potential in patients with RA.


Assuntos
Artrite Reumatoide/patologia , Fibroblastos/patologia , Glicólise , Proteína SUMO-1/metabolismo , Sinoviócitos/patologia , Enzimas Ativadoras de Ubiquitina/metabolismo , Animais , Artrite Reumatoide/genética , Artrite Reumatoide/metabolismo , Movimento Celular , Proliferação de Células , Feminino , Fibroblastos/metabolismo , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Fosforilação , Proteína SUMO-1/genética , Transdução de Sinais , Sinoviócitos/metabolismo , Enzimas Ativadoras de Ubiquitina/genética
11.
Int Immunopharmacol ; 76: 105791, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31472320

RESUMO

The accumulation of cytosolic dsDNA plays important roles in the regulation of cellular processes. However, whether cytosolic dsDNA is involved in the pathogenesis of rheumatoid arthritis (RA) is not clear. Therefore, the present study investigated the roles of cytosolic dsDNA in the modulation of inflammatory responses of fibroblast-like synoviocytes (FLS) in patients with RA. FLS were obtained from active RA patients. dsDNA accumulation in the cytosol was detected by immunofluorescence staining and the Qubit® dsDNA HS Assay. Immunohistochemistry was employed to detect the dsDNA and cGMP-AMP synthase (cGAS) expression in the synovium. Short hairpin RNA (shRNA) was used to knockdown the expression of cGAS and stimulator of interferon genes (STING). Protein expression was detected by Western blotting and immunofluorescence staining. We observed increased cytosolic dsDNA and cGAS expression in FLS and synovium from RA patients. dsDNA and cGAS expression correlated with the severity of rheumatoid synovitis. Transfection of dsDNA into the cytosol of RA FLS promoted pro-inflammatory cytokines production. DNaseII overexpression downregulated cytosolic dsDNA expression and inhibited dsDNA-induced cytokines secretion. We also found that dsDNA and TNF-α enhanced cGAS and STING expression, and dsDNA-induced cytokine secretion was reduced by cGAS or STING knockdown. Furthermore, we determined that the dsDNA-induced phosphorylation of IRF3 and NF-κBp65 was decreased by DNaseII overexpression or cGAS/STING knockdown. Overall, our findings show that increased cytosolic dsDNA level promoted inflammatory responses via the cGAS/STING pathway in RA FLS, which suggests that cytosolic dsDNA accumulation is an important contributor to FLS-mediated rheumatoid synovial inflammation.


Assuntos
Artrite Reumatoide/patologia , DNA/metabolismo , Proteínas de Membrana/genética , Nucleotidiltransferases/metabolismo , Sinoviócitos/patologia , Adulto , Artrite Reumatoide/genética , Artrite Reumatoide/metabolismo , Citocinas/metabolismo , Citosol/metabolismo , Feminino , Fibroblastos , Humanos , Fator Regulador 3 de Interferon/metabolismo , Masculino , Metaloproteinase 13 da Matriz/metabolismo , Pessoa de Meia-Idade , NF-kappa B/metabolismo , Membrana Sinovial/metabolismo , Membrana Sinovial/patologia , Sinoviócitos/metabolismo
12.
Int Immunopharmacol ; 63: 261-269, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30121047

RESUMO

OBJECTIVE: Hydroxychloroquine (HCQ) is an antimalarial drug that is widely used in the treatment of some autoimmune diseases. In the present study, we explore the role of HCQ in regulating endothelial inflammation and its underlying mechanism. METHODS: Human umbilical vein endothelial cells (HUVECs) were isolated from fresh umbilical cords. Protein expression was measured by Western blot or immunofluorescence staining. Endothelial adhesion ability was determined by leukocyte-endothelial monolayer adhesion assay. Transwell assay was used to measure the transendothelial-migration of PBMCs. RESULTS: TNF-α-induced endothelial-leukocyte adhesion and the leukocyte transmigration were profoundly reduced by HCQ treatment. HCQ treatment dramatically inhibited the expression of TNF-α-induced endothelial ICAM-1 and VCAM-1. Furthermore, treatment with HCQ prevented the TNF-α-induced translocation of NF-κB p65 into the nucleus and the phosphorylation of the p65 subunit in HUVECs. HCQ inhibited the expression of phosphorylated p38 and JNK protein but not ERK. Treatment with NF-κB, p38 and JNK inhibitor could also reduce TNF-α-induced endothelial-leukocyte adhesion and the endothelial expression of ICAM-1 and VCAM-1. HCQ administration also suppressed TNF-α induced lung injury in mice by reducing neutrophil infiltration in pulmonary interstitial tissue. CONCLUSIONS: This work shows the inhibitory effect of HCQ on endothelial inflammatory response through, at least in part, blocking NF-κB, p38 and JNK pathways. Our findings suggest that HCQ may be a promising approach for the treatment of inflammatory vascular disease beyond its immunomodulatory actions.


Assuntos
Anti-Inflamatórios/farmacologia , Antimaláricos/farmacologia , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Hidroxicloroquina/farmacologia , Adesão Celular/efeitos dos fármacos , Células Cultivadas , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Molécula 1 de Adesão Intercelular/metabolismo , Leucócitos/efeitos dos fármacos , Leucócitos/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Fator de Necrose Tumoral alfa/farmacologia , Molécula 1 de Adesão de Célula Vascular/metabolismo
13.
ACS Omega ; 3(10): 14302-14308, 2018 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-31458120

RESUMO

Molecule/protein aggregation causes many devastating and incurable diseases in human bodies. For example, studies have revealed that protein oligomers formed at the early stage are toxic and may be mostly responsible for some diseases. In the fundamental research, differentiation of different protein oligomers and quantification of the concentrations are important and challenging. Here, we have developed a multichannel time-tagged time-resolved (TTTR) confocal fluorescence model based on antibunching effect to solve the problem. The key point of the model is that n-oligomers labeled with n-dyes cannot emit more than n photons at one time. By assuming that all labeling dyes behave perfectly as noninteractive individual dyes, the analytic relationship between photon-emission probability and oligomer concentrations has been derived. Simulations have been carried out to verify the model, in which differentiation and concentration quantification of up to tetraoligomers can be realized with a relative error <10% in an eight-channel TTTR confocal setup with eight single-photon detectors.

14.
RSC Adv ; 8(22): 12260-12268, 2018 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-35539402

RESUMO

Along with the increasing applications of nanomaterials in medical fields, to know the systemic distribution of nanomaterials in the body through a precise method is required for the biosafety assessment of nanomaterials. In this study, we firstly have established a reliable inductively coupled plasma mass spectrometry (ICP-MS) method for concentration measurement of silver (Ag) and gold (Au) in biological tissues. Then, based on this method, the Ag or Au distribution in rat blood and almost all of the organs were analyzed after an i.v. or s.c. administration of Au@Ag NRs. Both the time-dependent contents of Ag and Au in blood and two pharmacokinetic models confirmed the rapid clearance of Ag from blood. At 24 h after i.v. injection, there was the highest level of Ag in liver, followed by portal nodes, spleen, lung, bone marrow and pancreas. In addition, we also found there were gender-related distributions of Ag and Au in some organs, especially after s.c. injection. Therefore, these more comprehensive and important results would give fundamental information for the biological risk assessment of nanomaterials.

15.
Sci Bull (Beijing) ; 62(1): 9-15, 2017 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36718073

RESUMO

Fluorescence correlation spectroscopy (FCS) is a widely used method for measuring molecular diffusion and chemical kinetics. However, when a mixture of fluorescent species is taken into account, the conventional FCS method has limitations in extracting autocorrelations for different species and cross correlations between different species. Recently developed fluorescence lifetime correlation spectroscopy (FLCS) based on time-tagged time-resolved (TTTR) photon recording, which can record the global and micro arrival time for each individual photon, has been used to discriminate different species according to fluorescence lifetime. Here, based on two-dimensional lifetime decay maps constructed from TTTR photon stream, we have developed a quantitative lifetime-deconvolution FCS model (LDFCS) to extract precise chemical rates for chemical conversions in multi-species systems. The key point of LDFCS model is separation of different species according to the global distribution of fluorescence lifetime and then deconvolution of autocorrelations and cross-correlations from the two-dimensional lifetime decay maps constructed by the micro arrival times of photon pairs at each delay time.

16.
J Tradit Chin Med ; 31(1): 7-9, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21563498

RESUMO

OBJECTIVE: To observe the effects of Lüfukang Capsules on arrhythmia induced by ligation of coronary artery in dogs. METHODS: Thirty dogs were randomly divided into 5 groups, the model group administrated with equal volume of distilled water, the positive control group administrated with Wenxin Granules, and the small, medium and large dosage LFKC groups, 6 dogs in each group. Thirty minutes after medication, electrocardiogram was conducted and the time of arrhythmia occurrence, times of ventricular premature beat (VP), and incidence rates of ventricular tachycardia (VT) and ventricular fibrillation (VF) were recorded in the model dogs with arrhythmia induced by ligation of coronary artery. RESULTS: Compared with the model group, the occurrence time of arrhythmia induced by the coronary artery ligation in the medium and large LFKC groups was significantly delayed (20.45 +/- 9.10 and 19.92 +/- 3.78, respectively, both P < 0.05). The frequency of VP in the medium and large LFKC groups was also significantly decreased (8.17 +/- 6.62 and 3.83 +/- 2.79, respectively, both P < 0.01). CONCLUSION: LFKC has anti-arrhythmic effects for the experimental arrhythmia induced by the ligation of coronary artery in dogs.


Assuntos
Antiarrítmicos/administração & dosagem , Arritmias Cardíacas/tratamento farmacológico , Vasos Coronários/cirurgia , Medicamentos de Ervas Chinesas/administração & dosagem , Animais , Arritmias Cardíacas/etiologia , Arritmias Cardíacas/cirurgia , Vasos Coronários/efeitos dos fármacos , Modelos Animais de Doenças , Cães , Feminino , Humanos , Ligadura/efeitos adversos , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...