Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Synchrotron Radiat ; 31(Pt 3): 517-526, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38517755

RESUMO

Physical optics simulations for beamlines and experiments allow users to test experiment feasibility and optimize beamline settings ahead of beam time in order to optimize valuable beam time at synchrotron light sources like NSLS-II. Further, such simulations also help to develop and test experimental data processing methods and software in advance. The Synchrotron Radiation Workshop (SRW) software package supports such complex simulations. We demonstrate how recent developments in SRW significantly improve the efficiency of physical optics simulations, such as end-to-end simulations of time-dependent X-ray photon correlation spectroscopy experiments with partially coherent undulator radiation (UR). The molecular dynamics simulation code LAMMPS was chosen to model the sample: a solution of silica nanoparticles in water at room temperature. Real-space distributions of nanoparticles produced by LAMMPS were imported into SRW and used to simulate scattering patterns of partially coherent hard X-ray UR from such a sample at the detector. The partially coherent UR illuminating the sample can be represented by a set of orthogonal coherent modes obtained by simulation of emission and propagation of this radiation through the coherent hard X-ray (CHX) scattering beamline followed by a coherent-mode decomposition. GPU acceleration is added for several key functions of SRW used in propagation from sample to detector, further improving the speed of the calculations. The accuracy of this simulation is benchmarked by comparison with experimental data.

2.
J Opt Soc Am A Opt Image Sci Vis ; 39(12): C240-C252, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36520774

RESUMO

We describe approaches to high-accuracy physical optics calculations used for the development of x-ray beamlines at synchrotron radiation sources, as well as simulation of experiments and processing of experimental data at some of these beamlines. We pay special attention to the treatment of the partial coherence of x rays, a topic of high practical importance for modern low-emittance high-brightness synchrotron radiation facilities. The approaches are based, to a large extent, on the works of Emil Wolf and co-authors, including the basic scalar diffraction theory and the coherent mode decomposition method. The presented simulation examples are related to the case of the novel Coherent Diffractive Imaging beamline that is currently under development at the National Synchrotron Light Source II at the Brookhaven National Laboratory.

3.
Opt Express ; 30(4): 5896-5915, 2022 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-35209542

RESUMO

Application examples of a memory and CPU efficient coherent mode decomposition (CMD) method for wave-optics based simulation of the partially coherent undulator radiation propagation through a hard X-ray beamline in a 3rd generation synchrotron radiation source are presented. The high efficiency of the method is achieved thanks to the analytical treatment of the common quadratic phase terms that are developed in the phase of cross-spectral density (CSD) of partially coherent radiation at a distance from source. This treatment allows for a considerable, several orders of magnitude, reduction of the 4D CSD mesh density (and the memory occupied by the CSD) required for ensuring sufficient accuracies of wavefront propagation simulations with the modes produced by the CMD at a beamline entrance. This method, implemented in the "Synchrotron Radiation Workshop" open-source software, dramatically increases the feasibility of the CMD of 4D CSD for producing 2D coherent modes for a large variety of applications at storage rings and other types of radiation sources.

4.
Plant Cell ; 34(3): 1038-1053, 2022 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-34919720

RESUMO

Starch is the main energy storage carbohydrate in plants and serves as an essential carbon storage molecule for plant metabolism and growth under changing environmental conditions. The TARGET of RAPAMYCIN (TOR) kinase is an evolutionarily conserved master regulator that integrates energy, nutrient, hormone, and stress signaling to regulate growth in all eukaryotes. Here, we demonstrate that TOR promotes guard cell starch degradation and induces stomatal opening in Arabidopsis thaliana. Starvation caused by plants growing under short photoperiod or low light photon irradiance, as well as inactivation of TOR, impaired guard cell starch degradation and stomatal opening. Sugar and TOR induce the accumulation of ß-AMYLASE1 (BAM1), which is responsible for starch degradation in guard cells. The plant steroid hormone brassinosteroid and transcription factor BRASSINAZOLE-RESISTANT1 play crucial roles in sugar-promoted expression of BAM1. Furthermore, sugar supply induced BAM1 accumulation, but TOR inactivation led to BAM1 degradation, and the effects of TOR inactivation on BAM1 degradation were abolished by the inhibition of autophagy and proteasome pathways or by phospho-mimicking mutation of BAM1 at serine-31. Such regulation of BAM1 activity by sugar-TOR signaling allows carbon availability to regulate guard cell starch metabolism and stomatal movement, ensuring optimal photosynthesis efficiency of plants.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Carbono/metabolismo , Hormônios/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Sirolimo , Amido/metabolismo , Açúcares/metabolismo
6.
Adv Mater ; 33(8): e2004782, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33448066

RESUMO

The revolutionary and pioneering advancements of flexible electronics provide the boundless potential to become one of the leading trends in the exploitation of wearable devices and electronic skin. Working as substantial intermediates for the collection of external mechanical signals, flexible strain sensors that get intensive attention are regarded as indispensable components in flexible integrated electronic systems. Compared with conventional preparation methods including complicated lithography and transfer printing, 3D printing technology is utilized to manufacture various flexible strain sensors owing to the low processing cost, superior fabrication accuracy, and satisfactory production efficiency. Herein, up-to-date flexible strain sensors fabricated via 3D printing are highlighted, focusing on different printing methods based on photocuring and materials extrusion, including Digital Light Processing (DLP), fused deposition modeling (FDM), and direct ink writing (DIW). Sensing mechanisms of 3D printed strain sensors are also discussed. Furthermore, the existing bottlenecks and future prospects are provided for further progressing research.

7.
Nat Commun ; 11(1): 5586, 2020 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-33149146

RESUMO

The tea plant (Camellia sinensis) presents an excellent system to study evolution and diversification of the numerous classes, types and variable contents of specialized metabolites. Here, we investigate the relationship among C. sinensis phylogenetic groups and specialized metabolites using transcriptomic and metabolomic data on the fresh leaves collected from 136 representative tea accessions in China. We obtain 925,854 high-quality single-nucleotide polymorphisms (SNPs) enabling the refined grouping of the sampled tea accessions into five major clades. Untargeted metabolomic analyses detect 129 and 199 annotated metabolites that are differentially accumulated in different tea groups in positive and negative ionization modes, respectively. Each phylogenetic group contains signature metabolites. In particular, CSA tea accessions are featured with high accumulation of diverse classes of flavonoid compounds, such as flavanols, flavonol mono-/di-glycosides, proanthocyanidin dimers, and phenolic acids. Our results provide insights into the genetic and metabolite diversity and are useful for accelerated tea plant breeding.


Assuntos
Camellia sinensis/metabolismo , Metaboloma , Folhas de Planta/metabolismo , Transcriptoma/genética , Camellia sinensis/química , Camellia sinensis/genética , China , Cromatografia Líquida , Flavonoides/química , Flavonoides/metabolismo , Flavonóis/química , Flavonóis/metabolismo , Glicosídeos/química , Glicosídeos/metabolismo , Espectrometria de Massas , Metabolômica , Filogenia , Folhas de Planta/genética , Polimorfismo de Nucleotídeo Único , RNA-Seq
8.
Research (Wash D C) ; 2020: 8685436, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32426728

RESUMO

Biomass-derived carbon materials (B-d-CMs) are considered as a group of very promising electrode materials for electrochemical energy storage (EES) by virtue of their naturally diverse and intricate microarchitectures, extensive and low-cost source, environmental friendliness, and feasibility to be produced in a large scale. However, the practical application of raw B-d-CMs in EES is limited by their relatively rare storage sites and low diffusion kinetics. In recent years, various strategies from structural design to material composite manipulation have been explored to overcome these problems. In this review, a controllable design of B-d-CM structures boosting their storage sites and diffusion kinetics for EES devices including SIBs, Li-S batteries, and supercapacitors is systematically summarized from the aspects of effects of pseudographic structure, hierarchical pore structure, surface functional groups, and heteroatom doping of B-d-CMs, as well as the composite structure of B-d-CMs, aiming to provide guidance for further rational design of the B-d-CMs for high-performance EES devices. Besides, the contemporary challenges and perspectives on B-d-CMs and their composites are also proposed for further practical application of B-d-CMs for EES devices.

9.
ChemSusChem ; 12(23): 5183-5191, 2019 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-31631573

RESUMO

Developing 3 D self-assembled nanoarchitectures with well-defined crystal structures is an effective strategy to enhance the electrochemical performances of electrode materials. (1 1 0)-oriented and bridged-nanoblocks self-assembled VS4 microspheres are controllably synthesized by a facile one-step hydrothermal method. The (1 1 0)-bridged structure sets up open pathways for Na+ diffusion among nanoblocks, and the (1 1 0)-oriented structure provides unobstructed pathways for Na+ diffusion in the nanoblocks, which collectively constructs multidimensional Na+ transfer channels in the VS4 microspheres, promoting the electrochemical kinetics. As an anode for Na-ion batteries (SIBs), this material exhibits pseudocapacitive Na+ storage and excellent rate capability, delivering high capacities of 339 and 270 mAh g-1 at rates of 0.1 and 2.0 A g-1 , respectively, with a capacity retention of 79 % in the voltage window of 0.5-3.0 V. In particular, the reversible capacity reaches 575 mAh g-1 after 300 cycles even at 1.0 A g-1 in the voltage window of 0.05-3.0 V, outperforming those of the ever-reported VS4 -based anode materials. This work presents an effective strategy to the exploration and design of high-performance anodes for SIBs.

10.
Plant J ; 98(6): 1078-1089, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30834637

RESUMO

Phosphoglycerate kinase (PGK) is a highly conserved reversible enzyme that participates in both glycolysis and photosynthesis. In Arabidopsis thaliana, one cytosolic PGK (PGKc) and two plastidial PGKs (PGKp) are known. It remains debatable whether the two PGKp isozymes are functionally redundant or specialized in plastidial carbon metabolism and fixation. Here, using a pooled clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) strategy, we found that plants with single mutations in pgkp1 or pgkp2 were not significantly affected, whereas a pgkp1pgkp2 double mutation was lethal due to retarded carbon fixation, suggesting that PGKp isozymes play redundant functional roles. Metabolomic analysis demonstrated that the sugar-deficient pgkp1pgkp2 double mutation was partially complemented by exogenous sugar, although respiration intermediates were not rescued. Chloroplast development was defective in pgkp1pgkp2, due to a deficiency in glycolysis-dependent galactoglycerolipid biosynthesis. Ectopic expression of a plastid targeting PGKc did not reverse the pgkp1pgkp2 double-mutant phenotypes. Therefore, PGKp1 and PGKp2 play redundant roles in carbon fixation and metabolism, whereas the molecular function of PGKc is more divergent. Our study demonstrated the functional conservation and divergence of glycolytic enzymes.


Assuntos
Arabidopsis/enzimologia , Sistemas CRISPR-Cas , Ciclo do Carbono , Carbono/metabolismo , Glicolipídeos/metabolismo , Fosfoglicerato Quinase/metabolismo , Arabidopsis/genética , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Citosol/metabolismo , Glicólise , Isoenzimas , Mutação , Fenótipo , Fosfoglicerato Quinase/genética , Fotossíntese , Plastídeos/enzimologia
11.
PLoS Genet ; 14(4): e1007373, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29702701

RESUMO

As a universal energy generation pathway utilizing carbon metabolism, glycolysis plays an important housekeeping role in all organisms. Pollen tubes expand rapidly via a mechanism of polarized growth, known as tip growth, to deliver sperm for fertilization. Here, we report a novel and surprising role of glycolysis in the regulation of growth polarity in Arabidopsis pollen tubes via impingement of Rho GTPase-dependent signaling. We identified a cytosolic phosphoglycerate kinase (pgkc-1) mutant with accelerated pollen germination and compromised pollen tube growth polarity. pgkc-1 mutation greatly diminished apical exocytic vesicular distribution of REN1 RopGAP (Rop GTPase activating protein), leading to ROP1 hyper-activation at the apical plasma membrane. Consequently, pgkc-1 pollen tubes contained higher amounts of exocytic vesicles and actin microfilaments in the apical region, and showed reduced sensitivity to Brefeldin A and Latrunculin B, respectively. While inhibition of mitochondrial respiration could not explain the pgkc-1 phenotype, the glycolytic activity is indeed required for PGKc function in pollen tubes. Moreover, the pgkc-1 pollen tube phenotype was mimicked by the inhibition of another glycolytic enzyme. These findings highlight an unconventional regulatory function for a housekeeping metabolic pathway in the spatial control of a fundamental cellular process.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Glicólise , Tubo Polínico/crescimento & desenvolvimento , Tubo Polínico/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo , Citoesqueleto de Actina/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/antagonistas & inibidores , Proteínas de Arabidopsis/genética , Padronização Corporal/genética , Padronização Corporal/fisiologia , Polaridade Celular/genética , Polaridade Celular/fisiologia , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Técnicas de Inativação de Genes , Genes de Plantas , Germinação/genética , Germinação/fisiologia , Glicólise/genética , Modelos Biológicos , Mutação , Fosfoglicerato Quinase/antagonistas & inibidores , Fosfoglicerato Quinase/genética , Fosfoglicerato Quinase/metabolismo , Plantas Geneticamente Modificadas , Pólen/genética , Pólen/crescimento & desenvolvimento , Pólen/metabolismo , Transdução de Sinais/genética , Proteínas rho de Ligação ao GTP/genética
12.
Phys Rev Lett ; 121(24): 242003, 2018 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-30608734

RESUMO

We present a state-of-the-art calculation of the isovector quark-helicity Bjorken-x distribution in the proton using lattice-QCD ensembles at the physical pion mass. We compute quasidistributions at proton momenta P_{z}∈{2.2,2.6,3.0} GeV on the lattice and match them systematically to the physical parton distribution using the large-momentum effective theory. We reach an unprecedented precision through high statistics in simulations, large-momentum proton matrix elements, and control of excited-state contamination. The resulting distribution with combined statistical and systematic errors is in agreement with the latest phenomenological analysis of the spin-dependent experimental data, in particular, Δu[over ¯](x)>Δd[over ¯](x).

13.
Zhongguo Zhong Yao Za Zhi ; 42(23): 4624-4630, 2017 Dec.
Artigo em Chinês | MEDLINE | ID: mdl-29376262

RESUMO

Anoectochilus roxburghii is a traditional Chinese medicine and natural health products. In the modern cultivation system, A. roxburghii is micropropagated in tissue culture, and the plants are transferred to soil cultivation for months. However, it remains unclear about the necessity of soil cultivation for the accumulation of health beneficial compounds. In this paper, we performed nontargeted metabolomic analysis using GC-TOF-MS and UPLC-Q-TOF-MS, on A. roxburghii plants at tissue culture stage or after 3 months of soil cultivation. The results showed that the primary metabolites such as alcohols and organic acids are abundant in the tissue culture plants. In contrast, polysaccharide, nucleoside, esters and secondary metabolites such as flavonoids, terpenoids were significantly accumulated in cultivated seedlings. Flavonoids and polysaccharides are considered as the principle effective components in A. roxburghii. Soil cultivation period is therefore essential for the accumulation of these metabolites.


Assuntos
Metaboloma , Orchidaceae/crescimento & desenvolvimento , Orchidaceae/metabolismo , Cromatografia Gasosa , Cromatografia Líquida de Alta Pressão , Espectrometria de Massas , Compostos Fitoquímicos/análise , Metabolismo Secundário
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...